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Abstract 

It has become impossible to imagine the fields of biochemistry and medicinal chemistry without computational 
chemistry and molecular modelling techniques. In many steps of the drug development process in silico methods 
have become indispensable. Virtual screening (VS) can tremendously expedite the early discovery phase, whilst 
the use of molecular dynamics (MD) simulations forms a powerful additional tool to in vitro methods through-
out the entire drug discovery process. In the field of biochemistry, MD has also become a compelling method 
for studying biophysical systems (e.g., protein folding) complementary to experimental techniques. However, both VS 
and MD come with their own limitations and methodological difficulties, from hardware limitations to restrictions 
in algorithmic capabilities. One solution to overcoming these difficulties lies in the field of machine learning (ML), 
and more specifically deep learning (DL). There are many ways in which DL can be applied to these molecular 
modelling techniques to achieve more accurate results in a more efficient manner or expedite the data analysis 
of the acquired results. Despite steadily increasing interest in DL amidst computational chemists, knowledge is still 
limited and scattered over different resources. This review is aimed at computational chemists with knowledge 
of molecular modelling, who wish to possibly integrate DL approaches in their research and already have a basic 
understanding of the fundamentals of DL. This review focusses on a survey of recent applications of DL in molecular 
modelling techniques. The different sections are logically subdivided, based on where DL is integrated in the research: 
(1) for the improvement of VS workflows, (2) for the improvement of certain workflows in MD simulations, (3) for aid-
ing in the calculations of interatomic forces, or (4) for data analysis of MD trajectories. It will become clear that DL 
has the capacity to completely transform the way molecular modelling is carried out.

Introduction
More than ever, it is absolutely clear how vital in silico 
techniques have become in the fields of biochemistry 
and medicinal chemistry. To study fundamental biologi-
cal processes such as biomolecular recognition, protein 
folding, or the binding of a potential drug to its target, 

computational methods have become indispensable. 
Experimental techniques (e.g., nuclear magnetic reso-
nance, X-ray crystallography, small-angle X-ray scat-
tering) are an important first step in e.g., characterizing 
the 3D structure of a protein or determining the way in 
which a small biomolecule binds its target. However, they 
come with important limitations. A single technique only 
provides information on certain aspects of a process of 
interest. The power of experimental techniques lies in 
combining the data obtained from all experiments to 
compose a complete and unified look at the way in which 
a process takes place. This requires time and asks consid-
erable resources. Furthermore, experimental techniques 
only capture static pictures of structures and complexes, 
whilst non-accessible intermediate states often deliver 
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valuable information that could end up being relevant for 
research in structural biology or drug discovery [1–3].

This is where computational methods come in useful. 
Widely used are virtual screening (VS) and molecular 
dynamics (MD) simulations. These techniques allow the 
evaluation of an entire process in question, rather than 
stills of the most stable or crystallized conformations. VS 
aims at predicting the binding affinities between protein–
ligand, protein-peptide, or protein–protein complexes. 
This is a technique that allows for rather fast evaluation 
of a library of compounds against a query drug target 
and could be used as an interesting starting point for 
structure-based drug design. On the other hand, MD 
can simulate the complex dynamics and conformational 
landscape of proteins, as well as the binding modes of 
protein–ligand complexes, using a model describing the 
physics that oversee all interatomic interactions. These 
simulations form an enormously powerful tool in pro-
viding general information about a biomolecular process 
and can help guide a study towards logical next steps and 
experimental techniques [1–3].

Of course, as is the case for experimental setups, com-
putational methods also come with their own limita-
tions. The accuracy of their predictions is limited by 
the strength of the algorithms in use. For example, high 
system flexibility of proteins can complicate the accu-
racy of predictions made by molecular docking algo-
rithms. Improvement of these algorithms is limited by 
current computing hardware. Algorithms that more 
closely parallel in  vitro conditions ask more resources 
and, depending on the hardware available to a research 
group, calculations could ask significant computing time. 
This also imposes a limit to the timeframes MD simula-
tions can simulate. There are nonetheless many differ-
ent approaches to counteract current limitations. The 
availability of computing time on supercomputers, the 
advances in graphics processing unit (GPU) technology 
and improvements in methodology have already upscaled 
the time a simulation can realistically calculate up to sev-
eral microseconds. Enhanced sampling methods (e.g., 
umbrella sampling, metadynamics, replica exchange 
MD, Gaussian accelerated MD, coarse-grained MD) have 
been extensively developed throughout recent years and 
make a significant impact on reducing the computational 
demands of calculations. Finally, a more recent but vital 
pathway to improve molecular docking and MD simu-
lations is artificial intelligence (AI), more specifically 
the fields of machine learning/deep learning (ML/DL). 
With advancements in GPU hardware, training a neural 
network (NN) has become more feasible timewise, and 
extensively developed software frameworks like Tensor-
Flow and PyTorch make the development of NNs much 
more accessible to non-experts [4–6]. Therefore, a deeper 

look into the basic usages of DL within computational 
chemistry (complemented with examples) will be the 
main focus of this review [1–3]. This article is aimed at 
computational chemists with knowledge of molecular 
modelling, who wish to possibly integrate DL approaches 
in their research and already have a basic understanding 
of the fundamentals of DL and neural networks. Interest-
ing references for further learning are provided [4, 7–9], 
as well as a glossary (see Table  1) that provides more 
insight into basic concepts in the field of DL and the DL 
architectures mentioned throughout this review. A use-
ful dissertation of the different overarching types of DL 
architectures was made by Sarker [10].

This review entails a non-exhaustive survey of recent 
and useful applications of DL within the field of molec-
ular modelling, seeing how DL could be employed to 
improve docking accuracy, simulation efficiency and tra-
jectory analysis [1]. The following sections were drafted 
to give a general description of how DL techniques could 
be employed at different stages of a structure-based drug 
design workflow, followed by examples found in litera-
ture of how such applications can be achieved in real-
ity. First, applying DL tools for the improvement of VS 
methods is discussed in the “Deep learning and virtual 
screening” section. Then, focus shifts to MD simulations, 
disserting how DL could aid in guiding along simulations 
to sample specific objective states (“DL-guided enhanced 
conformational sampling of protein structures” section), 
as well as how NNs could learn to calculate interatomic 
forces and take over simple force fields (FFs) for the nec-
essary MD calculations (“Neural network potentials” 
section). Lastly follows a discussion on how DL could 
improve and guide the analysis of MD trajectory data 
(“DL-guided analysis of MD trajectories” section).

To make this large review more manageable and under-
standable, the main body of the review is complemented 
with the “Review highlights” section. This entails a sum-
mary of the review paper, presenting a broad overview 
of the discussed methods throughout each topic, as to 
make their connections and trade-offs clearer. The “Rel-
evance of DL implementations and key toolset” section 
summarizes the relevance of these DL implementations 
and presents a table with a non-exhaustive look at key 
tools and datasets for DL model development, VS and 
MD methods, meant to inspire your research.  The “DL 
and VS” and “DL and MD”sections present an outline 
of the different methods discussed in respectively  the 
“Deep learning and virtual screening”and “Deep learn-
ing and molecular dynamics simulations” sections, with 
tables summarizing all the presented research examples. 
To conclude this review, the  “Conclusions and future 
perspectives” section offers some final remarks and rel-
evant open research questions.
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Table 1 List of key deep learning concepts mentioned throughout the main text and their explanation

DL concept Explanation

General concepts

 Artificial intelligence (AI) The ability of computers to mimic human behavior

 Machine learning (ML) ML is a subset of AI, capable of taking certain information as input and then 
using this to make an informed decision in the future. This process can 
either take place through optimization of the output predictions by com-
paring them with the actual expected output (a process called “supervised 
learning”), or through a process in which the ML algorithm is not explicitly 
told what to target with the provided input (a process called “unsupervised 
learning”) [204, 205].

 Deep learning (DL) DL is a subset of ML, specifically focused on using NNs of more than one 
hidden layer to extract useful features or patterns from the input data [4, 9, 
10]. DL further differs from ML in the way in which the data can be presented 
to the algorithm: DL can process virtually any type of information, whilst ML 
needs to be provided with a suitable input data type, often requiring a pre-
processing or feature extraction step [10]. DL is capable of learning underly-
ing features from data to hierarchically build up a concept/representation 
of the data in question, possibly in an unsupervised manner

 Neural network (NN) A NN consists of a connected series of neurons: building blocks capable 
of taking information as input, mathematically manipulating that data 
in some way, and then outputting the resulting value further down the net-
work. Except for the input layer and the output layer, each layer of neurons 
can be called hidden layers (due to no transparency). The described passing 
of information through the NN can be called forward propagation, resulting 
in a prediction result in the output layer. Backpropagation is the reverse 
process, in which the NN adjusts certain values (weights) between neurons 
based on the initial outputs of the network versus the desired outputs, 
as to optimize its predictive power [4, 7, 194, 206].

 Dense fully connected neural network (DFCNN) The most frequent architecture of a NN, in which all input values are densely 
connected to all neurons of the previous layer of the NN, and their outputs 
are densely connected to all neurons of the next layer [4, 206].

 Rectified linear unit (ReLU) Part of the mathematical equation inside a neuron is passing an intermediate 
result through a non-linear activation function, as to introduce non-linearities 
into the network and enable complex decision-making. The ReLU activa-
tion function causes all negative integers to be outputted as 0 but knows 
no upper boundary for positive integers. In general, models that employ 
ReLUs in hidden layers tend to train faster and result in more accurate predic-
tions [4, 7, 11, 194, 206, 207].

 Model parameters Model parameters are variables internal to the NN itself. These are values 
that arise from the processing of data and cannot be adjusted manually 
by a user whilst developing a network (e.g., weights or biases) [7, 194].

 Model hyper-parameters Model hyperparameters are values that a user can specify manually 
and that can be tuned to improve a NN (e.g., learning rate, stopping criteria, 
or regularization technique) [7, 194, 208].

 Deep transfer learning (DTL) Given that DL is a very robust and generalizable technique, the same DL 
model can often be repurposed for different applications through limited 
additional learning on a smaller training dataset compared to the datasets 
needed for the training of a new DL model [8].

 Explainable AI (XAI) A field of computer science focused on the understanding and interpreta-
tion of AI systems. There are many methods within the field of XAI to reach 
proper explainability and interpretability of AI systems, as disserted carefully 
by Linardatos and coworkers [209].

Concepts related to discriminative learning architectures (Learn to discriminate data between different class labels.)

 Multi-layer perceptron (MLP) Synonym fora standard DFCNN with forward propagation and backpropaga-
tion (given that another name for neuron is perceptron) [10, 210].
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Table 1 (continued)

DL concept Explanation

 Convolutional neural network (CNN) Pattern detection architecture for data of any number of dimensions (most 
commonly used to analyze 2D data). The model contains special layers called 
convolutional layers, which analyze specific regions of the input data and cre-
ate feature (activation) maps based on what features they “see” in those 
regions. Pooling layers take those feature maps and pool them, simplifying 
them further, before feeding this dimensionality reduced version of the data 
to a fully-connected network that can extract and learn the most interesting, 
essential features of the input [8, 10, 211–213].

 Residual neural network (ResNet) Classical CNN models face the vanishing gradient problem (limited learning 
in the early layers of the network) as more convolutional layers are added, 
often resulting in limited performance. A ResNet architecture provides 
a solution to such problems through a mechanism known as “skip con-
nections”. During initial training, this CNN-based model can skip certain 
layers, which speeds up the first training steps by compression of the initial 
network and causes appropriate learning in the deepest layers. It is then 
through retraining that all layers of the network are employed, and more 
of the feature space of the input can be explored, avoiding vanishing gradi-
ents [214].

 Recurrent neural network (RNN) Architecture for the analysis of sequential data: data points that depend 
on previous data points to be properly understood (e.g., the words in a sen-
tence, the amino acid letters in a protein sequence). In RNNs, it becomes 
important to integrate a type of memory, in which the output of previous 
steps forms an additional piece of input for following steps [4, 8, 10, 211, 213].

 Long short-term memory (LSTM) Due to the vanishing gradient problem, the most basic form of RNN 
is unable to keep information from initial data points in mind the further 
down the sequence the model is processing data. Therefore, variants 
on the RNN architecture have been created to offer recurrent connections 
to earlier memories throughout the network. These variants contain memory 
cells in their network layers, allowing for the storage of temporal states 
of the current network. These states can be fed to other parts of the net-
work to introduce a more advanced version of memory. In an LSTM RNN 
architecture, memory cells contain three gates: an input gate and out-
put gate to control the flow of information in and out of the cell, as well 
as a forget gate, which determines what information will or will not be stored 
in a temporal state. In a bidirectional LSTM (BiLSTM) RNN, hidden layers are 
connected in both directions, so that data can be sent to a cell from both the 
past and future [10, 211, 215].

 Gated recurrent unit (GRU) A GRU is a simplified version of an LSTM with fewer parameters. A GRU 
has only two gates, called a reset and an update gate. The flow of information 
through such a unit is more streamlined compared to an LSTM, with com-
parable performance (highest on smaller datasets) and faster computing 
times [10, 216].

 Graph neural network (GNN) GNNs have evolved from CNNs and RNNs and are characterized by the way 
they represent their input data: as graphs with nodes and edges. For exam-
ple, molecules can be represented as graphs, in which nodes represent atoms 
and edges represent bonds and/or noncovalent interactions, both character-
ized by user-defined features. Each node and edge are a unit of the full NN, 
capable of processing the input information contained within itself and its 
neighbors, forming an embedding. This dimensionality reduced representa-
tion of the data is then passed along to the first-order neighbors of the start-
ing node, where new embeddings are produced. This message passing pro-
cess continues until every node of the graph contains information of all other 
nodes. All the generated embeddings obtained from each node are gathered 
and summed, as to obtain one single representation of all data contained 
within the graph. This embedding can then form the input for a follow-up 
model for classification or regression predictions [217, 218].

Concepts related to generative learning architectures (Hierarchically learn to build up data points from the general features to be found in input data)
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Table 1 (continued)

DL concept Explanation

 Generative adversarial network (GAN) A GAN can create new data points by first learning the distribution of features 
and patterns of an input dataset. It consists of two NNs working in tandem: a gen-
erator and a discriminator. The generator analyses an input dataset, and from ran-
dom noise, it learns to create new plausible data points comparable to those 
in the original (real) set. The discriminator trains itself to predict the probability 
of a sample being from the original input data rather than from the generated 
data. During this process, the generator goes into competition with the discrimi-
nator in trying to produce samples that are indistinguishable from the real data 
points, whilst the discriminator tries to better learn feature information for distin-
guishing real and generated data points. This reciprocity leads to an enhance-
ment of the generated data [4, 7, 10, 46, 219]. Interesting applications of GANs 
lie in the field of video or voice generation, or as generative chemistry tools (e.g., 
compound generation) [4, 10, 46, 47, 213, 220].

 Auto-encoder (AE) An AE learns dimensionality reduced representations of data, from which 
reconstructions of the original input can then be generated. An AE consists 
of an encoder, code (latent space) and a decoder. The encoder analyses an input 
and learns the underlying features and patterns of the dataset. Through this 
dimensionality reduction, it’s able to learn how the distribution of features 
within a dataset is represented. It compresses the original data into a code, 
which is passed on to the decoder. The decoder then learns to reconstruct 
the original input from the code. This reconstruction is compared to the original 
input and the difference is minimized during the loss optimization process. 
Through this process, a lower-dimensional representation of the data is gener-
ated within the latent space of the code. This process is incredibly useful for many 
general learning tasks, including dimensionality reduction, feature extraction, 
generative modelling, denoising, and outlier detection [4, 10, 213, 220, 221].

 Variational auto-encoder (VAE) A VAE is a unique AE in the sense that traditional AEs map the code 
from the input onto a lower-dimensional latent vector, whereas VAEs map 
their data onto a probability distribution. A normal Gaussian distribution 
is used most, as it encourages the encoder to distribute the code evenly 
around the central point of its latent space. The data is assumed to follow 
a probability distribution, and its mean and variance are attempted to be esti-
mated by the network. The decoder network then attempts to reconstruct 
the original input by taking samples from the probability distribution. This 
distribution can afterwards be used to generate new synthetic data points 
close to those from the original dataset[4, 10, 213, 222, 223].

 Wasserstein auto-encoder (WAE) A type of VAE that develops its latent space in such a way it can intrinsically 
capture the sequence relationship of peptides [65].

 Convolutional variational auto-encoder (CVAE) A CVAE functions in the same way as a VAE, mapping its data onto a probabil-
ity distribution as latent space, but the hidden layers extracting or recon-
structing the input data make use of convolutions (as in CNNs) [139].

 Variational dynamics encoder (VDE) The predictions made by a VDE are reconstructions of future dynamics, 
based upon the encoding made by current datapoints. The model is modi-
fied in such a way that it is most suitable to be trained on time-series data. 
For this, it considers a new hyperparameter, a lag time, which represents 
the time scales of the dynamics that are of interest in the research in ques-
tion. After training on time-series data, the model can predict the state 
of the system after a timestep as big as the lag time. When done in an itera-
tive fashion, it creates trajectories of features with dynamics consistent 
with those of the training system [143].

 Restricted Boltzmann machine (RBM) RBMs are stochastic neural networks with visible and hidden layers that are 
limited to how they are connected and able to transmit information. A basic 
RBM architecture consists of two layers, one visible and one hidden. Input 
data gets transmitted and processed from the visible layer to the hidden layer 
and back. Afterwards, the output generated at the visible layer is compared 
to the initial input data. This process repeats for optimization, which leads 
to the network learning an accurate representation of the input. An RBM 
is comparable to a VAE, in the sense that it can learn a probability distribution 
across its input data which can be used for feature selection, dimensional-
ity reduction or classification tasks, and form the input for other learning 
processes [10, 219, 224].

This list is logically subdivided and sorted into (1) general concepts, (2) concepts related to discriminative learning architectures, and (3) concepts related to 
generative learning architectures
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To make it more comprehensible for the reader, a list 
of key deep learning concepts mentioned throughout the 
main text and their explanation is given in Table 1. This 
list is logically subdivided and sorted into (1) general 
concepts, (2) concepts related to discriminative learning 
architectures, and (3) concepts related to generative 
learning architectures.

Even though the field of medicinal chemistry is mainly 
used to navigate the review paper through the differ-
ent topics at hand, the described applications can be 
extrapolated for many different objectives within differ-
ent study fields employing computational chemistry. The 
studies discussed in the different sections all showcase 
the myriads of contributions DL could make in different 
study domains, as well as where improvements are still 
desirable.

Deep learning models applied to molecular 
modelling
Deep learning and virtual screening
Introduction. Virtual screening comprises of the calcu-
lation of the interactions of a compound with a certain 
drug target, as to predict how favorable the binding of 
that compound would be to the target [11]. This method 
generally yields fast and accurate results for the in silico 
filtering of large compound libraries (e.g., ChEMBL, 
PubChem, and ZINC databases) during drug discovery, 
but as with everything, more optimization is definitely 
possible [12–17]. A possible approach to optimizing VS 
methods is by infusing its workflow with DL models.

To make the following discussion more comprehensi-
ble, it is interesting to divide the different VS methods 
into two subcategories: structure-based virtual screen-
ing (SBVS) and ligand-based virtual screening (LBVS). 
In general, the output of VS calculations is a scoring 
function, a measure of the probability of a ligand and its 
target to bind noncovalently [11]. SBVS predicts target-
binding affinity based on the 3D structure of the com-
pound and the drug target. This is mostly done through 
molecular docking simulations. For SBVS, one of the 
most widely used docking programs is AutoDock Vina. 
Other programs are SMINA, GNINA, QuickVina-W, 
and GLIDE, among others [18–22]. LBVS on the other 
hand uses as input the molecular and chemical proper-
ties of a compound. It bases its prediction of the bind-
ing affinity on the similarity between this compound 
and a known ligand of the drug target. LBVS is mostly 
done by similarity searches and requires the input mol-
ecules to be configured as molecular fingerprints. A 
molecular fingerprint of a compound is an abstraction 
that involves turning the molecular and chemical prop-
erties of a molecule into a sequence of bits, which can 
then be compared between molecules. There are many 

different software packages capable of performing simi-
larity searches (e.g., RDKit, Open Babel, OEChem KT) 
[23–25]. Each of them supports different fingerprints, 
although the most common fingerprints are supported 
by each software package. LBVS steps can also be carried 
out using pharmacophores, a technique dubbed pharma-
cophore searching. Other techniques to perform LBVS 
are also available (e.g., Feature Trees, Topomers, Cresset’s 
FieldScreen, and OpenEye’s ROCS software) [26]. For an 
in-depth background on SBVS and LBVS, the reader is 
referred to the excellent papers of Vázques and Cleves & 
Jain, amongst many others [27–29].

Lay-out of “Deep learning and virtual screening” 
section. The  “DL-based molecular fingerprint genera-
tion”, “Drug-target interaction prediction with DEEP-
Screen” and “DeepScreening, a DL-based webserver for 
VS” sections focus on the use of DL for LBVS. The “DL-
based molecular fingerprint generation” section starts off 
with discussing a state-of-the-art ML method, inspired 
by current Natural Language Processing techniques, 
capable of generating a new type of molecular fingerprint 
for virtual screening. The  “Drug-target interaction pre-
diction with DEEPScreen” section describes a simple but 
effective LBVS-derived DL application employing struc-
tural information rather than molecular fingerprint infor-
mation, inspiring readers that DL models do not always 
have to be convoluted to be valid. The  “DeepScreening, 
a DL-based webserver for VS” section goes further than 
this and highlights an accessible, user-friendly webserver 
for LBVS-derived DL model development.

The “Complementary LBVS-derived and SBVS-derived 
DL models” section touches on the integration of mul-
tiple DL models. In this section, an application is exem-
plified in which a LBVS-derived and a SBVS-derived 
are integrated, highlighting how multiple models can be 
chained together to form effective workflows. Next, fur-
ther  bridging the gap between LBVS-based and SBVS-
based methods, the “DL as a compound generation tool 
for further VS steps” section reflects on generative DL 
models used as compound generation tools, of which the 
generated compound sets are then used for subsequent 
traditional VS steps.

Finally, the “DL-based replacements for docking meth-
ods: binding affinity predictors” and “DL-based replace-
ments for docking methods: pose predictors” sections 
delve into SBVS-derived DL models, replacing dock-
ing methods as binding affinity or pose predictors. For 
the “DL-based replacements for docking methods: bind-
ing affinity predictors” section, the discussed meth-
ods (DeepBindRG and Pafnucy) lay the foundation for 
binding affinity predictors. By employing general input 
descriptors and relatively simple architectures, they high-
light key drawbacks and limitations of this approach. 
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Many other architectures are built for these purposes, 
for which more references are provided. The section ends 
with an example of a recently published state-of-the-art 
model (AEV-PLIG). In the  “DL-based replacements for 
docking methods: pose predictors” section, binding pose 
predictors are described. The selected methods build 
on top of each other, improving previous limitations to 
reach two current state-of-the-art models (DiffDock and 
AlphaFold 3) spearheading how DL can be applied in the 
field of VS. These SBVS-derived methods are followed by 
a brief discussion on generalizability and bias in the “DL 
and VS: is it worth the candle? A discussion on generaliz-
ability and bias” section. Lastly, the “DL and VS: or is it 
the third one who takes it? Generative DL models for the 
replacement of traditional VS methods” section returns 
to generative DL models, in order to discuss those capa-
ble of completely replacing traditional VS procedures. 
These architectures are generally quite complex, exceed-
ing the scope of this review, but they are touched upon 
for completeness.

DL‑based molecular fingerprint generation
Mol2vec. Molecular fingerprints are numeric or 
binary representations of compounds, and form a 
fundamental basis for many computational techniques, 
ranging from ML/DL models to similarity searching 
or clustering. A popular molecular fingerprint is 
called the Morgan fingerprint [30]. Whilst generating 
Morgan fingerprints, a Morgan algorithm defines 
compound substructures within a molecular structure. 
These compounds substructures are what form the 
basis for the unsupervised ML method Mol2vec [31]. 
Mol2vec is inspired by a technique used in Natural 
Language Processing called Word2vec, which is 
capable of transforming words into vectors, leading 
to high-dimensional embeddings of sentences, where 
vectors of similar words are near in vector space [32]. 
Mol2vec applies this same technique, where compound 
substructures are considered the “words” of a sentence, 
and the “sentence” being the molecule as a whole. The 
Mol2vec algorithm then calculates a high-dimensional 
embedding of a molecular structure. It does this by 
defining feature vectors for each molecular substructure 
and summing them up to one compound vector of the 
molecule, in which chemically related substructures 
are close in vector space. Before being able to apply the 
Mol2vec algorithm to numerous techniques (e.g., ML 
methods such as a gradient boosting machine, or NNs), 
it first needs to be trained on unlabeled data to learn 
feature vectors of molecular substructures and to sum 
them up to compound vectors. Mol2vec is thus capable 
of providing a new representation for compounds, with 
this vector approach overcoming the drawbacks of many 

other feature representations (e.g., sparseness and bit 
collisions) and yielding state-of-the-art performance 
when applied to different ML/DL tasks. New compounds 
could even be generated with Mol2vec, by summing the 
feature vectors of molecular substructures retrieved from 
a pretrained Mol2vec model.

ProtVec. ProtVec applies a similar strategy for the vec-
torization of proteins [33]. It generates feature vectors 
for all the “words” in a protein sequence, with the words 
being all definable three-amino-acid sequences (con-
sidering all possible frameshifts). This results in a pro-
tein vector which is bigger in size than those created by 
Mol2vec. The compound and protein vectors of Mol2vec 
and ProtVec can be combined, leading to an alignment-
independent representations that can be easily applied to 
datasets of unrelated targets with low sequence similari-
ties [31].

IVS2vec. One clear and powerful example of an 
implementation of Mol2vec in a novel screening 
technique, capable of outperforming classical VS 
methods, is IVS2vec [34]. Inverse Virtual Screening 
(IVS) is a method to identify protein targets for certain 
ligands, hence it being the inverse of VS, where ligands 
are identified for a given protein target. IVS2vec uses 
the compound vectors generated by Mol2vec as input 
for a dense fully-connected neural network (DFCNN) to 
create a DL prediction model. After supervised training, 
the model is capable of a binary classification into either 
a class of potential targets with a high possibility of 
binding with the query ligand, or into a class of targets 
with low binding possibility. The model is also capable of 
outputting a binding score, allowing for a more thorough 
analysis of the prediction results. The NN architecture 
of IVS2vec consists of a DFCNN using rectified linear 
unit (ReLU) activation functions, leading to one output 
prediction value through a sigmoid activation function. 
Training was done using the PDBbind database of 2017 
[35]. Almost 15,000 relevant protein–ligand complexes 
were selected, after which the ligands were vectorized by 
Mol2vec as well as the residues making up the binding 
site pockets of the proteins. Both vectors were then 
merged into one representation of a protein–ligand 
complex. These vectors were used as the positive set 
for the supervised training, whilst a scramble between 
the compound and protein vectors was made to create 
a negative set containing nearly 20,000 false complexes. 
After training and validation, the IVS2vec model was 
further tested and evaluated on three independent 
datasets, indicating high performance. Drawbacks to 
applying an IVS technique such as IVS2vec are the 
limitations of only being able to use targets currently 
known and the computational limitations on the number 
of testable targets. Otherwise, IVS2vec is a strong aid to 
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drug repurposing or acquiring first indications of possible 
adverse drug reactions.

Drug‑target interaction prediction with DEEPScreen
A disadvantage of using molecular fingerprints as 
descriptors for the training of DL models for LBVS steps 
is the fact that pieces of molecular structure information 
potentially get lost in the fingerprint generation process. 
Different types of fingerprints deem different structural 
features important for target binding, which get stored in 
feature vectors whilst information seen as unimportant 
isn’t captured. This leads to a DL model being presented 
with only restricted molecular information for its clas-
sification or regression predictions. Therefore, it can be 
interesting to look at other ways to provide a DL archi-
tecture with structural input data of the entire molecule, 
as to allow the network itself to identify all the features 
relevant for target protein interactions.

DEEPScreen. An interesting example of a DL-based 
LBVS step employing alternative input data was 
developed by Rifaioglu et al. and was dubbed DEEPScreen 
[36]. When presented with drugs or drug candidate 
compounds, the goal of DEEPScreen is to predict novel 
interactions with drug targets. The application is a 
collection of individual convolutional neural networks 
(CNNs), each being an individual predictor for a 
target protein. Each predictive model was individually 
trained and optimized to predict the interactions of 
small molecule ligands with the target protein. Only 
ligand information was fed into each model, with loss 
optimization occurring through a label dictating to 
which target proteins this ligand is known to bind. The 
ChEMBL 23 dataset was used to set up manually curated 
training, validation, and test datasets for each predictive 
model. Care was taken to ensure each model was trained 
on balanced amounts of active (i.e., interacting) and 

inactive (i.e., non-interacting) datapoints for their target. 
A model takes the small molecule ligands in the form 
of SMILES representations as input and transforms the 
SMILES into 200-by-200 pixel 2D structural images. 
It then runs predictive CNN models on these 2D input 
images and generates a binary prediction for a ligand 
as being either active or inactive for the corresponding 
target protein (Fig.  1). The use of these 2D molecular 
images of compounds is assumed to lead the CNNs to 
inherently learn all the molecular structure features of 
the compounds in question and how they relate to target 
binding. According to the authors, this should result in 
higher accuracy of drug target interaction predictions 
over models using fingerprint featurization approaches. 
In total, models were developed for 704 target proteins.

After training all models, the performance of DEEP-
Screen was evaluated on multiple external benchmark 
datasets and compared to other state-of-the-art ligand-
based prediction approaches employing fingerprints 
(e.g., random forest classifiers, support vector machine 
classifiers, and logistic regression classifiers). In general, 
DEEPScreen was seen to outperform the other classi-
fier approaches, reflecting the benefit of employing 2D 
molecular images as input. Some novel predictions of 
drug compounds binding to certain drug targets were 
selected for further validation through a literature-based 
validation, molecular docking analysis, and in  vitro 
experiments. One case indicated the potential of DEEP-
Screen to predict novel inhibitors of the enzyme renin 
with potencies around the levels of investigational drug 
ligands, encouraging further investigation. In conclusion, 
the DEEPScreen project succeeded at generating highly 
optimized, high performance predictive CNN models for 
704 different drug target proteins, and all of this has been 
published as an open access tool. The architecture allows 
for an independent model to be downloaded separately 

Fig. 1 Overview of the DEEPScreen architecture. Each prediction model included in DEEPScreen takes as input small molecule ligands in the form 
of SMILES representations, transforms them into 200-by-200 pixel 2D structural images, and then runs a predictive CNN model on them in order 
to predict whether these ligands are either active (i.e., interacting) or inactive (i.e., non-interacting) against a specific target protein [36]



Page 9 of 44D’Hondt et al. Journal of Cheminformatics           (2025) 17:47  

for the testing of one specific target of interest. Addition-
ally, they focused on creating a reliable open access data-
set for ligand-based prediction approaches. Performance 
could be even more improved by transforming the input 
into 3D molecular representations (vide infra), although 
this would cause the models to become more computa-
tionally expensive, potentially limiting large scale use. 
Target proteins with only limited amounts of known 
ligand interactions, or none at all, were not able to be 
included in DEEPScreen, forming another limitation.

DeepScreening, a DL‑based webserver for VS
DeepScreening. To apply DL models, molecular 
modelers require not only knowledge of DL and high-
quality data, but also user-friendly tools and software. 
An example of an accessible web server for DL-based 
VS methods is called DeepScreening [37]. With the use 
of public or user-provided datasets, this application is 
capable of training DL models to perform classification 
or regression tasks. It could perform either VS on a 
provided chemical library or generate a de novo library 
of compounds for VS against a drug target. The user can 
specify a drug target of interest and provide a dataset 
for training if available, else the ChEMBL 24 database is 
used for extraction of the drug target and its ligands. The 
user then selects the features for determining molecular 
fingerprints of the compounds (for this, the PaDEL 
open-source software was built in) [38]. The parameters 
for the training of a classification or a regression model 
[respectively a DFCNN or a recurrent neural network 
(RNN)] also need to be specified. After that, a regression 
model can generate a de novo library of compounds to 

perform a VS on. Otherwise, the model performs a VS 
using a provided chemical library [37].

Application examples. Joshi et  al. conducted two 
hybrid VS procedures to find compounds active against 
a SARS-CoV-2 target enzyme, the 3-chymotrypsin-
like protease  (3CLpro) [39, 40]. In the first part of their 
research, they conducted a VS of natural compounds 
against  3CLpro. First, a predictive regression model 
was developed using DeepScreening, employing the 
ChEMBL3927 dataset for training. This first screening 
was a LBVS step, as the training data was converted 
into PubChem molecular fingerprint features using the 
PaDEL tool. The developed DL model consisted of an 
RNN architecture capturing the correlation between 
known  IC50 values of the training compounds and their 
molecular fingerprints. After training, it was used for 
the VS step, employing the Selleck database containing 
1,611 natural compounds, and leading to 500 selected 
hits with favorable molecular fingerprint features [39, 
41]. These hit compounds were fed into AutoDock Vina 
for molecular docking simulations, a SBVS step that led 
to a selection of 39 compounds. The compounds were 
then subjected to additional screenings (e.g., predictions 
of their pharmacokinetics, drug-likeness and toxicity, 
among others), resulting in a selection of three suitable 
compounds. In the final step, these three compounds 
were subjected to MD simulations of 100  ns. After 
further analysis, two final compounds were selected 
to form stable complexes with  3CLpro. These could be 
further analyzed for therapeutic development against 
SARS-CoV-2 (Fig. 2) [39].

The same hybrid screening workflow was employed for 
the second part of their research, this time developing an 

Fig. 2 Overview of the DeepScreening workflow employed by Joshi et al. for the screening of natural compounds against  3CLpro. Through 
a LBVS step employing a DL predictive model, a SBVS step employing a traditional molecular docking method, additional in silico screenings 
for characteristics such as pharmacokinetics and toxicity, and MD simulations, a database of 1,611 compounds was narrowed down to two specific 
hit compounds for further testing [39]
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RNN for drug repurposing of drugs against  3CLpro. Start-
ing with 9,101 drugs from the DrugBank database, this 
compound library was narrowed down with the RNN-
LBVS step, an AutoDock Vina SBVS step, additional 
screenings, and MD simulations, to eventually iden-
tify two potential drugs to be further tested in vitro and 
in  vivo against SARS-CoV-2 [40]. This research group 
also adapted the hybrid screening workflow for drug 
repurposing of FDA-approved drugs against Candida 
albicans dihydrofolate reductase, eventually identifying 
rifampin, lumacaftor, and paritaprevir as having great 
potential to inhibit the query enzyme, imploring further 
exploration of these drugs [42].

Complementary LBVS‑derived and SBVS‑derived DL models
Drug repurposing DFCNN. Zhang et  al. performed a 
hybrid VS for drug repurposing targeting the viral RNA-
dependent RNA polymerase (RdRp) of SARS-CoV-2 [43]. 
They proposed a hybrid workflow consisting of two con-
secutive complementary DL models, a classical VS step 
using AutoDock Vina, MD simulations of the binding 
pocket, and metadynamics simulations of the entire sys-
tem. This allowed them to narrow down the 1,906 drugs 
present in the Approved Drug Library by TargetMol 
down to four market available drug candidates [44]. The 
first DL model employed in the study is a DFCNN that 
takes as input the concatenated compound and protein 
pocket vector of protein–ligand complexes, as generated 
by Mol2vec (see the “DL-based molecular fingerprint 
generation” section). From this, it can predict a protein-
drug binding probability through a scoring function. The 
value of this model as the first step of the hybrid work-
flow is the fact that the model only considers molecular 
and chemical information of the compounds as packed in 
the compound vectors (similar to LBVS). By not taking 
the information provided by the complex conformations 
into account, faster prediction speeds could be reached.

DeepBindBC. The second DL model was dubbed 
DeepBindBC, developed by the same research group 
[43]. Similar to SBVS, this model also considers spatial 
information of the protein–ligand interfaces. It requires 
the same input as generated by AutoDock Vina about a 
protein–ligand complex structure. With the use of this 
spatial information, DeepBindBC is better capable of dis-
tinguishing non-binders than the DFCNN yet requires 
more computational time. At the end of the hybrid work-
flow, the four compounds were tested in vitro. Pralatrex-
ate was the final compound identified as a potential new 
therapeutic agent against SARS-CoV-2 through the tar-
geting of RdRp.

Zhang et  al. also adapted a similar workflow for drug 
repurposing against tumor necrosis factor-α-induced 
protein 8-like 2, or TIPE2, impacting cancer and 

inflammatory diseases [45]. The biggest difference in 
this study compared to their previous research on RdRp 
is the scale of the VS steps, scaling up to over 8,000 
starting data points. At the end of the thoroughly carried 
out workflow, four final candidates were selected for 
in vitro experimental validation. These four compounds, 
including a low-micromolar affinity binder, offer new 
information about inhibitors of TIPE2 and can help 
facilitate further drug development.

DL as a compound generation tool for further VS steps
Next to classification or regression tasks, DL models can 
also be powerful generative tools, an approach that can 
be very useful in drug discovery [46]. The next examples 
make use of that feature by employing generative NN 
models to investigate chemical space and generate small 
molecules or their descriptors. The works discussed in 
this section use generative models to create ligands for 
subsequent screening through more traditional VS steps 
(for an illustration of generative models to replace com-
plete VS workflows, see the “DL and VS: or is it the third 
one who takes it? Generative DL models for the replace-
ment of traditional VS methods” section).

GAN by Andrianov et  al. Andrianov and coworkers 
employed a generative adversarial network (GAN) to 
identify new HIV-1 entry inhibitors, capable of blocking 
the CD4-binding site of the viral envelope protein gp120 
[47]. The goal of the GAN was to generate new molecular 
fingerprints comparable to those in the training 
dataset. Based on these fingerprints, similar or identical 
compounds were identified from a big chemical library 
for further testing. The encoder part of the GAN is in and 
of itself an autoencoder (AE). Getting as input molecular 
fingerprints, the output of the encoder is a molecular 
fingerprint that approximating of the original input 
with probabilities connected to each bit. This output is 
used for loss optimization of the autoencoder, leading 
to a latent layer with a normal distribution. For further 
optimization of this latent layer and thus to correctly 
learn the features of molecules that bind to gp120, 
the latent layer is passed on to the discriminator of the 
GAN, itself a DFCNN. After initial training of the AE as 
a separate entity, the output of the AE was used to train 
the decoder to distinguish a randomly generated normal 
distribution from the encoded normal distribution on the 
latent layer (Fig. 3).

For this training, a dataset of over 120,000 compounds 
was generated with the AutoClickChem software 
package [47, 48]. Through molecular docking using 
the QuickVina 2 software package, the generated 
compounds with relatively high binding affinity to gp120 
were selected for model training. MACCS fingerprints 
were calculated for each compound using RDKit. After 



Page 11 of 44D’Hondt et al. Journal of Cheminformatics           (2025) 17:47  

multiple careful training steps, a trained GAN was 
produced, capable of generating MACCS fingerprints of 
molecules with relatively high binding affinity to gp120, 
as well as with drug-like qualities. The finished GAN 
model was then used to generate MACCS fingerprints 
of high binding affinity compounds. These MACCS 
keys were sought out via fingerprint similarity search in 
the Drug-Like dataset from the ZINC15 database. After 
QuickVina docking simulation tests, three compounds 
were selected for further evaluation of their binding 
affinities through semi-empirical quantum chemistry 
and molecular dynamics. When combining all acquired 
data, the three compounds exhibit high binding affinity 
to gp120 as well as drug-like physicochemical properties, 
which make them suitable for the development of novel 
HIV-1 inhibitors. The entire goal of applying the GAN 
for this research objective was to narrow down a big 
library of drug-like compounds, making this workflow 
less computationally expensive and time-consuming than 
considering all compounds of the library for molecular 
docking or MD simulations. A downside of the technique 
was the limited number of molecular fingerprints 
generated by the network, leading to possible under 
sampling of the relevant chemical landscape. Other 
examples of GANs developed for generating molecules 
have been described [49–52].

LSTM RNN. Going back to  3CLpro in SARS-CoV-2, 
Arshia et  al. conducted another study to identify new 
drug candidates capable of inhibiting this critical enzyme 
[53]. For this objective, a generative long short-term 
memory recurrent neural network (LSTM RNN) was 
developed through deep transfer learning (DTL). The 
original network, called LSTM_Chem, was trained purely 
on ChEMBL datasets and was designed to capture the 
features of SMILES molecular representations. It can use 
this information for the generation of new molecules, 
similar to the training data but with a high degree of 
structure variation. The model was adapted for the 
purpose of this research and retrained using SMILES of 
ChEMBL and ZINC databank compounds. Employing 
the retrained DL model, 10,000 first generation SMILES 
were generated. These compounds were tested in 
RDKit for validity, uniqueness, and originality. After 
further validation steps, the selected set was used for 
AutoDock Vina docking simulations with  3CLpro. The 
genetic docking algorithm selected 50 compounds from 
the dataset for further fine-tuning of the LSTM RNN, 
after which a second generation of 10,000 SMILES was 
generated. Such a workflow loop was adopted for 10 
generations. From these generations, all compounds 
under a certain binding affinity cut-off score were 
selected. Hierarchical clustering on this dataset led 
to four clusters, with the compound with the highest 

Fig. 3 Overview of the GAN architecture developed by Andrianov et al. for the in silico generation of HIV-1 entry inhibitors. The generator consists 
of an AE model capable of analyzing molecular fingerprint input and generating new synthetic fingerprints through sampling of its learned 
latent space. This learned latent space is further optimized through adversarial learning with the discriminator, which gets taught to distinguish 
the latent space from random normal distribution data. After training and optimization, the generator was used to obtain synthetic fingerprints 
of strong binders against the HIV-1 viral envelope protein gp120, which were sought out in a chemical library through a fingerprint similarity search 
for further testing [47]
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binding affinity in each cluster being selected for further 
analysis (Fig.  4). After carrying out extensive MD 
simulations with these molecules, it was concluded that 
all four compounds could be potential  3CLpro inhibitors. 
However, these are mere in silico results without further 
in  vitro or in  vivo validation. Generation of even more 
generations of compounds could have led to more 
suitable compounds than those selected now. Other 
examples in literature of RNNs developed for generating 
molecules, which could subsequently be connected to VS 
workflows, have been described [52, 54–62]. A review 
discussing even more studies that all applied DL for VS 
and molecular docking against SARS-CoV-2 targets was 
written by Sun et al. [63].

WAE. Das et  al. used DL generation tools to come 
up with solutions for another global threat on the rise, 
namely the growing antimicrobial drug resistance. They 
developed a variational autoencoder (VAE) for the de 
novo generation of antimicrobial peptides (AMPs) with 
desired properties [64]. A Wasserstein autoencoder 
(WAE) [65] was chosen as the VAE in question. The 
way in which a WAE is capable of generating a latent 
space causes the latent space to intrinsically capture 
the sequence relationship of the peptides, whereas the 
latent space of a normal VAE fails to do so. The WAE 
contained a bidirectional gated recurrent unit (GRU) 
encoder, whereas the decoder was a GRU. The WAE was 
trained using all known short peptide sequences (i.e., 25 
amino acids at most) available on UniProt, represented as 
text strings. Using all available short peptide sequences 
for the training—instead of training only on known 

AMPs—leads to better exploration of plausible peptides 
beyond known antimicrobial templates. After training, 
the created latent space of the WAE was passed on to a 
binary classifier DL model, dubbed Conditional Latent 
(attribute) Space Sampling (CLaSS). Four bidirectional 
LSTM classifiers were developed and trained on over 
multiple thousand labelled peptides sequences to each 
capture and classify one specific property of a peptide 
sequence. The most important classifier was whether the 
sequence is an actual AMP and thus with antimicrobial 
function. This antimicrobial function classifier was 
used to skewer the sampling from the latent space of 
the trained WAE model. Making use of all four CLaSS 
classifiers, a rejection sampling scheme was created 
capable of generating molecules with desired attributes. 
This led to all generated peptide sequences being unique, 
diverse, optimized and valid AMPs with broad-spectrum 
potency and low toxicity. With this DL generation and 
classifier tool, 163 candidate AMPs were selected for 
further testing using coarse-grained MD simulations, as 
well as in vitro and in vivo testing. Two compounds were 
identified to demonstrate low toxicity in mice and high 
potency against multiple Gram + and Gram- pathogens, 
as well as to have a low disposition to induce drug 
resistance in E. coli. From this technique, it becomes 
clear that DL can accelerate the discovery of relevant 
antimicrobials. Other examples of VAEs developed for 
generating molecules, which could subsequently be 
connected to VS workflows, can be found in literature 
[66–72].

Fig. 4 Overview of the workflow employed by Arshia et al. for the in silico compound generation of  3CLpro inhibitors. An LSTM RNN architecture 
was trained through DTL for the generation of  3CLpro binding molecules. Each generation step, the generated molecules were further validated 
and tested using traditional molecular docking methods. A genetic algorithm then selected a limited number of compounds for further finetuning 
of the RNN model. After ten generation steps, all molecules with high binding affinity for  3CLpro were clustered through a hierarchical clustering 
method, and the compounds with the highest binding affinity in each cluster were selected for further testing [53]
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The discussed models throughout this section all 
generate molecules whose relevance and validity requires 
additional checks, such as through traditional docking 
methods. However, most recent efforts have been to 
develop models capable of generating valid molecules 
directly by fitting a certain binding pocket. This approach 
would allow for the complete replacement of traditional 
VS workflows. Other architectures than those discussed 
up until this point become relevant in this context, 
such as graph neural networks (GNNs) [73, 74]. These 
models will be touched upon in the  “DL and VS: or is 
it the third one who takes it? Generative DL models for 
the replacement of traditional VS methods” section. 
Additional reviews discussing de novo drug design with 
DL architectures can be found [75, 76].

DL‑based replacements for docking methods: binding affinity 
predictors
Current docking software for SBVS steps use scoring 
functions to estimate protein–ligand binding affinity. The 
values predicted from these software packages are based 
on expert knowledge, considering different interaction 
terms in different proportions. Often, multiple binding 
conformations as well as ligand and protein flexibility are 
also considered. Different approaches can lead to varying 
docking scores, which in turn lead to different conclu-
sions. Multiple ML models have been developed for the 
scoring of docking results (e.g., RF-score and NNscore), 

but these models still rely on feature engineering and 
expert knowledge [77–80]. DL techniques could entail 
a completely unique view for the prediction of protein–
ligand binding affinity. A NN could be capable of learn-
ing the binding mode of a protein–ligand complex in an 
implicit manner, by learning protein–ligand interface 
contact information from training on a large protein–
ligand dataset. Best case, this should allow for more flex-
ibility in the learning of features of complexes, compared 
to human-based feature selection [81]. This could lead to 
models capable of predicting the binding affinity of pro-
tein–ligand complexes (vide infra) or even predicting 
the pose of a ligand within a protein (“DL-based replace-
ments for docking methods: pose predictors” section). 
Knowledge of such approaches is currently still limited, 
and comes with important limitations, as will be dis-
cussed below.

DeepBindRG. Zhang et  al. propose a deep neural 
network (DNN) called DeepBindRG, which is capable 
of predicting the binding affinity of protein–ligand 
complexes (Fig.  5) [81]. For this, a residual neural 
network (ResNet) architecture was built. As input, the 
research group used a 2D binding interface-related 
matrix, as to simplify the data to an image-format, whilst 
keeping as much interface information (atom types, 
atom pairs, and spatial information) as possible. For 
this, over 15,000 crystallized protein–ligand complexes 
were retrieved from the PDBbind database 2018. Several 

Fig. 5 Overview of the DeepBindRG architecture and the external validation carried out on this DL model by Zhang et al. [81] Crystallized protein–
ligand complexes from the PDBbind 2018 database were used as training, validation, and internal test sets for DeepBindRG: a CNN model based 
on the ResNet architecture. Datapoints were fed to the network as 2D binding interface-related matrices and eventually led to an output prediction 
of the binding affinity of the ligand to the protein. After training and internal validation, DeepBindRG was further validated using external datasets 
with either known or unknown native protein–ligand conformations. When unknown, the traditional molecular docking method AutoDock Vina 
was used to generate the binding complex
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extra independent testing sets were selected for further 
validation steps, containing either known or unknown 
native protein–ligand conformations. After training and 
initial validation using the internal validation set, the 
different external test sets were employed for further 
validation of the developed ResNet architecture. For 
the test sets containing complexes without known 
native conformations, AutoDock Vina was used to 
generate the protein–ligand binding complex. Different 
strategies were employed to evaluate the best way to 
choose which conformation generated by the docking 
software is near native and is best used for performing 
the final prediction. First, the prediction results from 
the test sets with known native conformations were 
compared to the performance of AutoDock Vina. After 
analysis, DeepBindRG was found to outperform the 
classical docking software. However, when analyzing the 
predictions made on the test sets without known native 
conformations, it became clear that there was still lots 
of room for improvement of the current DL method. 
Inconsistent prediction results indicate that there is an 
important difference between the positive results seen 
with predictions on known complex conformations and 
the results obtained in a setting that would more closely 
mimic real-world applications, namely when the native 
conformation isn’t known.

The remaining challenges of this model are how to 
generate conformations as close as possible to the native 
conformation without resorting to AutoDock Vina, and 
how to identify and select a conformation that is native-
like. Another difficulty is the discrepancy between train-
ing data and real application data. In the training set, 
strong binders are dominant. With real-world data how-
ever, non-binders would be dominant, and weak binders 
would be present in higher numbers than strong binders. 
The currently trained model could thus underperform 
due to this discrepancy. Still, the DeepBindRG model 
performs well in general for several independent datasets 
from different sources. This research helped in uncover-
ing more generalized issues still present for deploying 
DL models for the prediction of protein–ligand com-
plex binding affinities. This becomes even more apparent 
when comparing the results of DeepBindRG to Pafnucy 
(vide infra). The accuracy of both models turned out to 
be comparable and both face the same difficulties.

Pafnucy. Stepniewska-Dziubinska et  al. developed 
a similar DL model, called Pafnucy, also attempting to 
predict the binding affinity of protein–ligand complexes 
[79]. For this, a model made up of a combination of con-
volutional and dense layers was built, using 4D informa-
tion as input instead of 2D information. The 4D tensor 
consists firstly of three dimensions with points defined by 
Cartesian coordinates, in order to encode the positions 

of the heavy atoms of the system on a 3D grid. It also 
contains a fourth dimension consisting of a vector of 19 
features per atom in the system (e.g., atom type, hybridi-
zation, number of bonds with other heavy atoms and het-
eroatoms). For training, validation, and testing, almost 
15,000 protein–ligand complexes were taken from the 
PDBbind database 2016. Additional test sets were taken 
from the Astex Diverse Set [82]. Open Babel was used for 
the generation of the atom features [24]. In order to allow 
for better generalization and to avoid sensitivity to the 
orientation of the protein–ligand complex, every com-
plex was presented to the model in 24 unique orienta-
tions, leading to 24 training examples per complex. After 
building, training, and internal validation of the 3D CNN 
architecture, the external test sets were run through the 
model. The prediction results were compared to com-
monly used scoring functions (e.g., X-Score, ChemScore) 
obtained through classical VS. Analysis showed that Paf-
nucy outperforms the classical scoring functions. In the 
previously discussed paper, Zhang et  al. tested Pafnucy 
on the same four test sets without known native confor-
mations as DeepBindRG and received similar middling 
results between the two models [81]. This shows that Paf-
nucy could suffer from the same pitfalls as DeepBindRG 
when applied to real-world research questions. Many 
other binding affinity prediction models have been devel-
oped throughout recent years, employing CNN or GNN 
architectures and a range of different input descriptors 
[83–103].

AEV-PLIG. Valsson et al. recently investigated strate-
gies to enhance the applicability of these DL-based scor-
ing function predictors [104]. They first developed the 
attention-based GNN model AEV-PLIG (atomic envi-
ronment vector-protein ligand interaction graph), which 
is better capable of capturing the complex interplay of 
interactions determining binding affinity. They evaluated 
the performance of their model alongside Pafnucy and 
non-ML-based scoring functions on a variety of bench-
marks, such as CASF-2016 (a widely used benchmark 
for scoring functions) [105]. This evaluation showed 
no better performance of these ML models compared 
to standard scoring functions. In order to enhance this 
performance, the researchers applied a data augmenta-
tion strategy on their training data, which used 3D pro-
tein–ligand structures modelled using template-based 
alignment or docking. Such an augmentation strategy 
significantly improved AEV-PLIG’s prediction ability, but 
it also makes the limits of this current technique clear: 
these binding affinity predictors still require accurate 
protein–ligand information for their training. To combat 
this reliance on traditional molecular docking data, other 
types of DL models learn to predict the binding poses of 
protein–ligand complexes themselves.
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DL‑based replacements for docking methods: pose predictors
Traditional molecular docking methods are quite com-
putationally expensive and still rather inaccurate, either 
due to limitations in the pose prediction steps or in the 
current scoring functions. With respect to the latter, DL 
models such as DeepBindRG, Pafnucy or AEV-PLIG suc-
ceed at outperforming current scoring functions through 
binding affinity predictions. However, they still rely on 
protein–ligand conformations generated previously, for 
example through traditional molecular docking methods. 
Recently, attempts to tackle these problems have proven 
successful through new DL architectures, attempting to 
not only predict protein–ligand binding affinities, but 
also predict the binding poses themselves. Given a pro-
tein structure and ligand pair, the first of these models 
attempted to predict the location of the ligand binding 
site in the protein, as well as the most optimal binding 
pose and ligand orientation, all in one shot.

EquiBind. Stärk et  al. developed EquiBind, a geo-
metric and graph DL model capable of such one-shot 
predictions whilst reaching significant speed-ups in com-
putational time compared to traditional docking [106]. 
This setup succeeds at blind docking, i.e., correctly dock-
ing a ligand in a protein without prior knowledge of its 
binding site. To generate a suitable input for the model, 
the research group used a clustering technique via RDKit 
to create a molecular graph of both the ligand and the 
protein of a complex. This input is fed into an intricate 
DL architecture consisting of a combination of a graph 
matching network and a GNN. This type of model allows 
for the learning that happens in the model to be com-
placent with certain restrictions. Geometric constraints 
were added to prevent steric clashes in the direct-shot 
docking procedure, to allow only biologically plausi-
ble flexibility of the ligand within a rigid protein struc-
ture, and to ensure that the initial 3D conformations of 
both compounds don’t influence the output predictions. 
For training and testing, protein–ligand structures from 
PDBbind were taken. QuickVina-W, GNINA, SMINA, 
and GLIDE were run on the same test set as a baseline for 
comparison. Two evaluation metrics were used for this 
analysis. First, the root-mean-square-deviation (RMSD) 
was used to show the difference in distance between the 
atoms at the predicted position of the ligand versus the 
actual docking pose, whilst the centroid distance acted 
as a measure of the ability of the model to find the cor-
rect binding pocket. When analyzing the obtained test 
results, it could be concluded that EquiBind is much 
faster than the traditional molecular docking baseline 
methods, whilst also generally delivering predictions that 
are less far off from the true conformer. That said, even 
with the geometric constraints, cases were still present 
where the right configuration of ligand atoms within the 

binding pocket was hard to find. It also lacks the capabil-
ity of predicting a binding affinity value. The architecture 
does allow for extra finetuning steps, as to obtain better 
final predictions at a higher computational cost.

TANKBind. Taking a similar GNN approach, Lu et al. 
developed TANKBind [107]. This architecture builds in a 
new form of bias in its predictions through trigonometry 
constraints, succeeding better at preventing steric clashes 
and unrealistic conformation predictions. An additional 
module now also allows for binding affinity predictions. 
When taking a protein and ligand as input, the model 
segments the protein into functional blocks, in each 
of which it then analyses all possible binding sites with 
the given ligand and eventually outputs one final bind-
ing pose with a ligand binding affinity value. The model 
was trained and evaluated with the same data as EquiB-
ind, and the same four traditional docking methods were 
used for comparison. This method proves to outperform 
EquiBind in identification of the binding region and 
docking pose, whilst reaching the same level of speedups. 
This, in combination with the state-of-the-art binding 
affinity prediction module, delivered promising results 
for DL-based molecular docking methods. Other pro-
tein–ligand binding pose prediction models employing 
GNN architectures can also be found in literature [108, 
109].

DiffDock. Both EquiBind and TANKBind saw a 
significant increase in speed compared to traditional 
molecular docking methods, but only a relatively small 
increase in accuracy. Corso et al. approached this docking 
problem from a different angle when developing DiffDock 
(Fig. 6) [110]. They didn’t want to predict the most fitting 
binding pose in one shot, rather they wanted to develop 
a DL architecture that could search the space of possible 
binding poses in an iterative process guided towards the 
most optimal one. Through a diffusion generative model, 
an intricate architecture involving convolutional layers 
[111], they are capable of sampling poses via a reverse 
diffusion process. Starting with random conformations 
of the ligand docked onto the protein, their model learns 
and transforms a noisy prior distribution into a learned 
distribution. Throughout this process, it samples possible 
realistic binding poses and step-by-step refines the 
system towards a most optimal final binding pose. This 
diffusion process happens over the degrees of freedom 
of the system that are relevant for the docking process: 
translation, rotation, and torsion angles of the ligand 
relative to the protein. A second module, a confidence 
model, was added to provide confidence predictions of 
each sampled binding pose and provide the top ranked 
pose. The method was built, trained, and tested using 
PDBbind complexes as data, similar  to EquiBind and 
TANKBind. Its results were once more compared to 
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both of these DL docking methods, as well as traditional 
methods QuickVina-W, GNINA, SMINA, and GLIDE. 
DiffDock outperforms all the mentioned methods, nearly 
succeeding at doubling the success rate of a prediction in 
finding the most optimal binding pose. It reaches high 
speedups compared to traditional models, albeit slower 
than one-shot prediction models. Its confidence scores are 
an accurate indicator of the top sampled pose throughout 
the diffusion model, providing valuable information for 
downstream steps in a drug discovery workflow. Where 
the other DL methods lost their accuracy when employing 
them on protein structures folded through computational 
methods instead of the apo-structure determined through 
crystallization, DiffDock retains much of its accuracy. 
This information makes it clear that DiffDock is a very 
interesting application that could be applied to real-world 
research questions and could provide valuable, accurate 
docking results for further drug design applications.

AlphaFold 3. This currently most recent version 
of AlphaFold has managed to progress the field of 
docking predictions even further [112]. AlphaFold 2 is a 
computational method, based on DNNs, that is capable 
of predicting the 3D structure of proteins with unknown 
tertiary and quaternary structures, purely based on 
their amino acid sequence and knowledge gained from 
all proteins with known 3D structures [113]. A detailed 
description of the architecture developed by Google 
DeepMind exceeds the scope of this review paper, but 
depends on attention neural network algorithms. These 
are seen in transformer networks, namely capable of 
the storing of information learned at certain points 
in the network, impacting the weights given to other 
features; a process mimicking cognitive attention. 

The current AlphaFold 3 version expands upon the 
AlphaFold 2 architecture and is capable of handling 
arbitrary interactions of proteins with other proteins, 
small molecule ligands, nucleic acids, and modified or 
non-canonical residues [112]. High performance has 
already been observed throughout several different tasks. 
In ligand docking, AutoDock Vina is outperformed on a 
specific benchmark complex set called PoseBusters (428 
liganded protein structures from the PDB), using only 
protein sequences and ligand identities as inputs, whilst 
the classical VS software uses bound protein structures 
as input [114]. The work demonstrates that the highest 
quality bound structure predictions are made when 
both the protein and ligand positions are predicted in 
a joint fashion. Thus, the latest AlphaFold model shows 
that computational predictions through ML/DL models 
can outperform traditional docking strategies and could 
be applied soon as state-of-the-art applications for VS 
during drug design.

DL and VS: is it worth the candle? A discussion 
on generalizability and bias
An interesting discussion is led by Volkov et  al. which 
debates what these binding affinity prediction models 
actually learn [115]. They argue that the drug discov-
ery industry hasn’t benefitted yet from these DL models 
because of poor generalization, certainly towards larger 
compound libraries. To formulate a hypothesis as to why 
proper generalization is so difficult to achieve, they per-
formed a comparison between a bunch of DL models 
recently developed for binding affinity predictions, and 
the data with which they were trained. Counterintui-
tively, they concluded that the accuracy of these models 

Fig. 6 Overview of the DiffDock architecture by Corso et al. [110] When given separate ligand and protein structures as input, the DL model 
employs a reverse diffusion process to step-by-step sample more realistic binding poses and refine the system towards binding poses as optimal 
as possible. A confidence model is then employed on each final binding pose to predict their confidence and provide the top ranked poses
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appears independent of training set size, and moreover, 
that higher complexity of the descriptors of proteins, 
ligands, and their interactions doesn’t translate to higher 
accuracy of the DL models. With these observations, 
they hypothesize that DL models simply memorize hid-
den patterns in the data fed to the model during train-
ing, without actually learning underlying biophysical 
principles of noncovalent interactions. This learning 
was also observed by Yang et  al. as they showed multi-
ple CNN-based binding affinity predictors showing equal 
performance when trained only on ligand descriptors or 
protein descriptors compared to protein–ligand inter-
action descriptors [100]. They also identified the differ-
ent types of biases that tend to arise in often-employed 
datasets, artificially enhancing DL model performances. 
These bias types are further discussed by Chen et  al., 
showing bias can also be induced by analogues and 
decoys present in datasets [116].

The discussion then becomes whether what current 
models are learning is something to be regarded as a dis-
advantage and problem to tackle, or rather a strength of 
the technique. Regardless of the answer to this question, 
the way forward to improving binding affinity prediction 
models should be through increasing the generalization 
capabilities of a model whilst preserving accuracy. The 
study by Volkov et al. attempted to remove hidden biases 
in their training data to improve the generalization capa-
bilities of developed models but were unable to succeed 
in that respect [115]. They do suggest to only train DL 
models on protein–ligand interaction descriptors, omit-
ting ligand and protein descriptors, to reduce the risk of 
overfitting. Sieg et al. propose the need for specific data-
sets for binding affinity predictor models and discuss 
guidelines to avoid forms of bias in the training data and 
validate the model after training [117]. As an example, 
bias scoring functions could be developed for the selec-
tion of datapoints during dataset development. In gen-
eral, it becomes clear that there are still challenges ahead 
to better understand and improve upon what binding 
affinity prediction models learn from, to develop models 
ready for general applications.

DL and VS: or is it the third one who takes it? Generative DL 
models for the replacement of traditional VS methods
A shift in interest in recent years can be observed in the 
resurgence of generative molecular design: a technique 
that attempts to go beyond virtual screening or docking 
scores, by using DL models to generate or optimize mole-
cules to fit within a binding pocket of interest [118]. Mul-
tiple approaches are being explored for this goal. There 
are algorithms that build a ligand in 3D utilizing a repre-
sentation of the target protein structure, e.g., TargetDiff 
or PILOT (diffusion models), Pocket2Mol or FRAME 

(GNNs), TacoGFN, and others [118–124]. As another 
example, there are models that generate/optimize 2D 
molecule structures through attempting to optimize a 
structure-explicit scoring function, e.g., AHC (a GRU-
based model) or AutoGrow 4 [118, 125–127]. Due to the 
large variety in possible approaches and a lack of stand-
ardized evaluation methods, it is quite difficult to evalu-
ate and compare the models. That said, there are a slew of 
papers trying to benchmark the 3D methods. They show 
the models still have a long way to go to becoming truly 
satisfactory, both in terms of generating valid geometries 
as well as qualitative molecules for further drug design 
[128–133]. However, given that this is currently still quite 
a data-limited field, enormous progress is being made for 
the models aiding the VS workflow, as well as those try-
ing to overtake the VS-step through generative molecular 
design. If these methods are implemented in a carefully 
thought-out manner, they will allow for relevant time- 
and resource-saving in a drug development workflow 
[118].

Deep learning and molecular dynamics simulations
Introduction. MD allows for gaining relevant dynami-
cal and kinetic information of protein–ligand systems, 
whilst being a relatively inexpensive method compared 
to in vitro counterparts. Next to aiding in drug discovery, 
MD simulations can be applied for solving biophysical 
problems, such as protein folding. Modelling these com-
plex processes requires simulations to access biologically 
relevant timescales. This remains a huge challenge, as the 
more complex a system to be investigated is, the more 
computational time calculating one timestep will cost. 
Ever-improving hardware (current GPU-heavy super-
computers) and the continuous development of enhanced 
sampling MD approaches has allowed general systems to 
reach simulation times in the order of milliseconds [134–
136]. Systems of around 100,000 atoms can nowadays be 
simulated on the GPU-partitions of a supercomputer for 
100–1,000  ns per day. Whilst interesting processes can 
be observed within such timescales, relevant sampling 
of binding/unbinding processes or the conformational 
space of complex systems (e.g., intrinsically disordered 
proteins) requires timescales yet unreachable. Apply-
ing ML/DL to MD simulations forms a new approach to 
improving the current state-of-the-art regarding MD and 
has been successfully applied with promising results.

Lay-out of “Deep learning and molecular dynamics 
simulations” section. The next sections will dive into 
different areas in which DL can be of aid to MD, either 
by enhancing the conformational sampling (“DL-guided 
enhanced conformational sampling of protein struc-
tures” section), through the design of alternative force 
field potentials (“Neural network potentials” section), or 
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by boosting the analysis of MD trajectories (“DL-guided 
analysis of MD trajectories” section). The models dis-
cussed in the “DL-guided enhanced conformational sam-
pling of protein structures” section were selected to build 
on top of each other, from a relatively simple architecture 
helping in selecting conformations for additional simula-
tions, to more complex workflows that make the archi-
tectures more transparent and transferable. The “Neural 
network potentials” section delves into these alternative 
force field potentials called neural network potentials 
(NNPs), showcasing the different generations of NNP 
architectures and ending with the state-of-the-art models 
and workflows for the simulation of organic molecules. 
For the “DL-guided analysis of MD trajectories” section, 
an often-employed technique for DL-aided MD analysis 
is showcased through two research examples that use 
different input descriptors and explanation methods for 
the DL model. A third research example from the field 
of genetics demonstrates the broad applicability of such 
DL-aided MD analysis methods throughout all compu-
tational chemistry related fields. This section concludes 
with a discussion on the need for appropriate input 
descriptors and validation of analysis results. All-in-all, 
the “Deep learning and molecular dynamics simulations” 
section offers a non-exhaustive but inspirational look into 
how DL models can improve current MD-based work-
flows, while also touching upon its current limitations.

DL‑guided enhanced conformational sampling of protein 
structures
Proteins can be defined as flexible molecules, with their 
dynamics being intimately connected to their function 
[137]. MD simulations can be leveraged to characterize the 
conformational space of proteins, gaining access to infor-
mation that would otherwise be difficult to derive with 
in  vitro experiments (e.g., X-ray crystallography, nuclear 
magnetic resonance). With the current enhanced sampling 
MD approaches (e.g., metadynamics, replica exchange 
MD, Gaussian accelerated MD), more of the conforma-
tional landscape can be investigated, mitigating the risk of 
under sampling. Another way in which enhanced sampling 
can be achieved is by interlacing the MD simulations with 
active ML components [138] or predictions made by a DL 
model trained on simulation data. Training a generative 
network to predict new conformations within the confor-
mational space of a protein could form an interesting tech-
nique to obtain starting conformations for additional MD 
simulations [137]. Guiding such models to form conforma-
tions with certain restrictions could guide the simulations 
towards a desired goal within conformational space. For 
example, designing a generative model to identify inter-
mediate states in protein folding pathways could help in 
obtaining a folded protein conformation starting from an 

unfolded state [139, 140]. It could also be possible to train 
models to predict the effects of perturbations to MD simu-
lations, such as mutations in a protein sequence, changes 
in the ionic concentration or solvent type of a system, 
changes in FF, etc. The impact of such perturbations on 
the protein dynamics could then be characterized without 
requiring additional simulations [141].

The computational motifs that are presented here 
exceed the scope of protein folding and can be extrapo-
lated to be applied to other biophysical problems or drug 
discovery processes. For example, it could be interest-
ing to use MD simulations to study the movement of a 
ligand throughout protein channels to and from bind-
ing sites. Without enhanced sampling approaches, this 
migration will very probably not be seen within reason-
able timescales. With enhanced sampling, the movement 
of the ligand can be guided along to and from such pro-
tein channels. This could be done with a hybrid MD/DL 
workflow, guiding the MD simulations along by selecting 
interesting starting conformations in the protein channel 
for additional simulations.

Generative AE. Degiacomi describes the development 
of a generative AE that is trained on MD simulation 
data and can generate new possible conformations for 
a protein (Fig. 7) [137]. To create training and test sets, 
MD simulations were run for a protein of interest, after 
which frames throughout the whole run were extracted 
as different conformations for the datasets. This input 
was fed as flattened Cartesian coordinates into an AE 
architecture, with the input layer being N-dimensional (N 
being the degrees of freedom of the system of interest). 
The AE model leads to an encoding that is a low-
dimensional representation of the conformational space 
of the protein of interest. The decoder is then capable of 
taking this latent vector and expanding it once more to 
create an output as close as possible to the initial input 
structures. Within the conformational space of the 
latent vector, it is also possible to select any coordinate 
and generate a new protein conformation from it. This 
requires the atomic arrangements at those places to be 
actual plausible molecular structures. Extensive tests were 
run to test the validity of generated conformations. In the 
end, it could be concluded that valid conformations were 
indeed generated, stretching or compression of atoms 
barely being observed in any structures. The possibility 
of the model to interpolate structure states in between 
the input states fed to the model was clearly showcased, 
indicating that new states cannot be extrapolated from 
the input data. It was also shown to use the model to 
predict the structure of a protein undergoing substantial 
motion when bound to other molecules. The model was 
seen to perform better and produce a wider range of 
structures when trained on a flexible protein. Generated 
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protein conformations can be coupled to a docking 
screen, to determine conformations that are closer to 
a bound state than the starting conformations. These 
states can be used as starting conformations of new MD 
simulations, now capable of better sampling the bound 
states. Thus, the most suitable generated complexes 
could be refined in a second step using more complex 
and expensive computational techniques. The current 
model needs to be developed separately for any protein 
of interest. That said, it proves it should be possible to, 
given a large enough dataset, develop a general NN that 
could be trained quickly through DTL for the solving of a 
specific conformational sampling problem.

DeepDriveMD. Ma et  al. developed a functional 
example of an MD/DL iterative workflow for protein 
folding problems (Fig.  8) [139]. A convolutional 
variational autoencoder (CVAE) was developed to 
process MD simulation data of a protein of interest, 
and cluster these conformations in the latent space into 
regions with certain biophysically relevant features. 
This then enables the identification of relevant protein 
conformations as starting coordinates for new MD 
simulations [142]. The workflow guides MD simulations 
towards reaching a certain end goal in smaller timeframes 
and in a relatively short amount of workflow iterations. 
A CVAE model was developed for two protein test cases, 

in which the input simulation data was fed into the 
network as flattened Cartesian coordinates in a contact 
map representation. The goal for both test cases was to 
start off with a completely unfolded amino acid sequence 
and guide the simulations to sample the folded states. 
The latent spaces in the encodings of the trained CVAE 
models contain specific latent features that could be used 
to select conformations with specific characteristics. 
These latent features are emerging properties of the 
clustering in the latent space, they are not fed into the 
network as part of training data. The research group used 
the RMSD of a conformation compared to the native 
state of the protein as latent feature for their selection 
of specific conformations. In cases where the native 
state isn’t known, the RMSD compared to the starting 
conformation still provides interesting information about 
which conformations are more folded than the original 
state. These latent features form the trick to propagating 
MD simulations towards the folded state of a protein: if 
an ensemble of MD simulations is carried out at the same 
time (allowing for parallelization) and their data is fed 
into the CVAE, it can analyze which MD runs sample 
novel parts of conformational space and which don’t. 
In the test cases, this means selecting the MD runs that 
sample conformations with RMSDs closer to the native 
state.

Fig. 7 Overview of the generative AE architecture developed by Degiacomi [137]. Of a protein of interest, the flattened Cartesian coordinates 
of a dataset of conformations are fed to the AE model as input. After learning, the latent space is a low-dimensional representation 
of the conformational space of the protein. Through interpolation, it now becomes possible to generate new protein conformations, which can be 
used as starting conformations for other in silico techniques, such as molecular docking or MD simulations
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With this model, it becomes possible to create a work-
flow in which certain simulations that don’t deliver 
new information get cut off, whilst new simulations are 
booted up that can discover novel parts of the confor-
mational landscape. Thus, a subset of the conformations 
generated by original MD runs are selected to start new 
MD simulations. At the same time, other runs get cut 
off in an iterative manner. This process takes place until 
the test case proteins are folded, which means reaching a 
certain RMSD cut-off value close to the native state. One 
of the two test cases succeeded at sampling the native 
state of the protein, whilst throughout the other test 
case partially folded states were extensively sampled. It 
is hypothesized that through extension of these simula-
tions, complete folding of the protein would also be sam-
pled. These test cases are strong arguments for the use of 
intermediate data analysis with DL to drive subsequent 
computations.

The concurrent, coupled MD runs and DL applications 
sprout forth the requirement of well-thought-out 
workload and performance balancing. Employing the 
CVAE in guiding the MD simulations along was proven 

a worthy undertaking, as the time to train the model 
took about a nanosecond worth of MD calculations. 
The workflow’s overall performance thus increases by 
employing the CVAE rather than simply extending the 
simulation timeframes. Still, the added complexity of 
adaptive workflows poses significant challenges to not 
waste time on workload balancing. What it means to have 
good or bad performance with DL-driven MD simulation 
workflows was expanded by the research group [140]. In 
this paper, the integrated approach is also generalized in 
DeepDriveMD, a framework for carrying out DL-driven 
MD simulations using self-chosen DL models and MD 
simulation techniques.

VDE workflow. In the work by Sultan et  al., a DL 
model is trained to perform enhanced sampling together 
with MD simulations, focusing their efforts on making 
the developed model transferable to other related 
systems [141]. According to the authors, more traditional 
AE networks suffer from low explainability and unclear 
transferability. Also, due to the input data containing 
no information about dynamics, these networks could 
artificially form barriers between states that are actually 

Fig. 8 Overview of the MD/DL iterative workflow developed by Ma et al. for protein folding problems, employing a CVAE architecture [139]. MD 
simulations are run in parallel for a protein of interest. The conformations generated throughout these simulations are fed to the CVAE as flattened 
Cartesian coordinates. After learning, the latent space is a low-dimensional representation of the conformational space of the protein, with regions 
defined by specific latent features/characteristics. This can be used to sample conformations with certain latent features (e.g., the RMSD 
of a conformation compared to the folded native state/unfolded starting state). Based on these samples, specific simulation runs can be terminated, 
and new runs can be started from the sampled conformations, in order to speed up the protein folding process
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kinetically similar. To address these bottlenecks, the 
research group developed an interesting workflow. 
First, they designed a new variant of an AE, dubbed 
a variational dynamics encoder (VDE) [143]. In the 
VDE loss function’s goal of reproducing time-lagged 
dynamics, it is capable of naturally mapping states 
kinetically similar to each other in such a way that no 
artificial barrier is created between them. This model 
was coupled to a technique used in explainable artificial 
intelligence (XAI) called saliency mapping, to aid in 
interpreting the features that contribute to the observed 
predictions. The magnitude of the derivative of the 
network’s output with respect to the input features can 
help in understanding what features are important in the 
decoder’s reconstruction from the latent embedding. This 
VDE architecture was successfully applied in a protein 
folding test case, where the learned latent coordinate 
was used as a collective variable (CV) for well-tempered 
metadynamics simulations. All major conformational 
states of the protein were clearly distinguishable from 
each other. This means that the latent variable learned 
a highly nonlinear transformation capable of separating 
the most important forms of movement of the molecule. 
When employing this variable as a CV, it is possible to 
guide MD simulations to sample the most important 
dynamical behavior of a protein.

Such a model turns out not easily be scalable to larger 
systems, as the amount of input features for the VDE 
would greatly increase, leading to more input nodes 
and hidden layers, upping calculation time. Therefore, a 
pre-processing step was added as dimensionality reduc-
tion. The dimensionality reduction was achieved through 
time-structure based independent component analy-
sis (tICA) [144]. The data now selected to be passed on 
to the VDE and then to MD simulations still allows for 
maximal exploration of conformational space. It allows 
for smaller VDE architectures and adds another layer of 
explainability, since it is possible to analyze what features 
the tICA modes represent, and thus what the network 
is accelerating. This leads to the following workflow: 
dimensionality reduction through tICA, training of a 
VDE, and lastly using the latent coordinate of the VDE 
as CV for enhanced sampling MD simulations. Accord-
ing to the research group, this workflow allows for trans-
ferability of the learned latent space to closely related 
proteins. The latent coordinate learned through the train-
ing of the VDE is likely to be conserved between highly 
similar proteins (e.g., mutants) or between similar albeit 
slightly differing conditions. As a proof of concept, such 
transferability was tested through the application of this 
workflow to capture the effects of a mutation on the con-
formational landscape of a protein domain. One VDE 
model was trained on data from the wild type domain, 

after tICA pre-processing. This was used as CV for well-
tempered metadynamics simulations on both the wild 
type and the mutated domain. For both protein domains, 
walkers were seen to sample the correct folded states, as 
well as a frequently observed misfolded state.

In short, this work delivers a workflow that is flexible, 
scalable and transferable across related protein mutants 
and related simulation conditions. However, it is not easy 
to determine when transfer of the learned latent coordi-
nate will fail to be predictive and not allow for efficient 
sampling of a related system. This should be determined 
case by case, and arbitrarily transferring networks is 
not something advised. Other generative NNs that have 
been designed to guide folding sampling towards lesser 
explored regions of conformational space of proteins and 
obtain accurate free energy landscapes can be found in 
literature [145–151].

Neural network potentials
In the previous section, all the described workflows 
utilized DL models layered on top of MD simulations 
to guide them towards a desired objective. A completely 
different approach is the integration of DL models 
into the MD simulations itself, aiding in speeding up 
the necessary calculations. The biggest drawback of 
conventional MD is the approximate method that needs 
to be used when calculating the potential energies of 
a system’s atoms. As to allow for maximal realism of a 
simulation, classical MD FFs are designed to calculate 
the atomistic potentials as close to real-world values 
as possible, whilst at the same time trying to keep 
calculation times feasible. This requires the FFs to 
simplify the descriptions of the interatomic interactions, 
by which accuracy is lost. Classical FFs are generally only 
reliable for the sampling of near equilibrium states and 
cannot be used for the investigation of chemical reactions 
or transition states. Their accuracy can also vary wildly 
between systems, leading to the development of many 
different FFs optimized for different system types. Finding 
new ways of expediting these calculations without losing 
any more accuracy proves quite a challenge. In this 
respect, research is going on to investigate whether ML 
methods could be used as an alternative approach in the 
form of ML potentials. ML methods form an interesting 
alternative to classical FFs in the calculations of atomistic 
potentials. They offer molecular energy predictions at 
quantum mechanical (QM)-level accuracy at speeds 
faster than classical calculations or the relatively fast 
electronic structure methods such as density functional 
theory (DFT). At the same time, they allow for 
transferability. They also don’t require knowledge of the 
functional form of a system, allowing all types of atomic 
interactions to be described without bias and at a similar 
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level of accuracy. When these atomistic potentials are 
predicted using NNs, they are defined as neural network 
potentials or NNPs, which by now form an integral tool 
for MD simulations themselves [152, 153].

An extensive review of the current state-of-the-art 
regarding NNPs was composed by Behler in 2021, and 
the classification scheme developed in that review will be 
used as the basis for a short discussion regarding NNPs 
in the following paragraphs [153]. First, it is important 
to define a ML potential, of which an NNP is a subgenre. 
A ML potential can be defined as an analytic expression 
of the potential energy surface (PES), providing the 
potential energy and its analytic derivatives as a function 
of the atomic positions using a ML algorithm. It is 
constructed using a consistent set of reference electronic 
structure data. It doesn’t contain any assumptions 
about the functional form of the system, apart from 
the approximations implicitly included in the chosen 
reference electronic structure method [153]. An NNP 
is a ML potential in which the chosen ML algorithm is 
a DNN. The first NNPs were developed as far back as 
over 25 years ago, but these were only applicable to low-
dimensional systems, meaning that these systems were 
only allowed to contain a small number of atoms. In 
the following decades, this field boomed, and a way was 
discovered to apply NNPs to high-dimensional systems, 
containing tens of thousands of atoms. Currently, 
a classification can be made, dividing the different 
NNPs developed over the years into four generations. 

First-generation NNPs are those that are functional for 
low-dimensional systems, with calculations depending 
only on a few degrees of freedom. Second- to fourth-
generation NNPs are all high-dimensional NNPs 
(HDNNPs), with the third-generation HDNNPs building 
on top of second-generation HDNNPs by including long-
range interactions in the potential energy calculations, 
and fourth-generation HDNNPs building on top of 
that by also describing long-range charge transfers. 
The differences between the four generations will be 
discussed in more detail below.

First-generation NNPs. These ML potentials are 
based on a DFCNN, a simple, feed-forward NN that 
is learned to describe the global potential energy of a 
system. In its simplest form, a DFCNN takes as input 
the Cartesian coordinates of a system. Throughout 
training of the weights of the network, which is done 
by comparing its predictions to calculations made by 
a reference electronic structure method such as DFT, it 
learns to predict the potential energy of the entire system 
purely based on the current positions of all the atoms 
in the system (Fig. 9). This is advantageous in the sense 
that no prior knowledge is needed about the underlying 
physical principles leading to such energies, such that 
no bias is included in the predictions. It leads to a very 
simple functional form, of which derivatives can be 
calculated that are needed for the calculation of atomistic 
forces. This all leads to a network that allows for accurate 
energy predictions and force calculations many orders of 

Fig. 9 Overview of 1st generation NNP architectures, which consist of DFCNNs taking as input the Cartesian coordinate vector of the N atoms 
of a system of interest and output a potential energy prediction for that system [153]



Page 23 of 44D’Hondt et al. Journal of Cheminformatics           (2025) 17:47  

magnitude faster than the classical electronic structure 
method used for building the reference dataset.

Nevertheless, this first generation came with impor-
tant drawbacks. The larger the system in question, the 
bigger the input coordinate vector, which leads to a size 
increase of the entire network and its hidden layers. 
Thus, the dimensionality of the network easily increases 
to sizes at which the calculations become computation-
ally unfeasible. Accurate sampling of high-dimensional 
spaces remains unattainable with a simple DFCNN. On 
top of that, in this design each atom’s coordinates relate 
to one neuron in the input layer. As the dimensionality 
of a DFCNN needs to remain fixed, there is a restriction 
that only systems with the same dimensionality as those 
in the training process can be simulated. Cartesian coor-
dinates are also difficult input parameters as they are 
rotation- and translation-depending: if the system gets 
rotated or moved around, these coordinate numbers will 
change, meaning the input of the NN will change, as well 
as its output. As a sidenote, it is important to address that 
certain activation functions containing a discontinuity in 
their derivate, like a ReLU activation function at its ori-
gin, cannot be used for the representation of a continu-
ous function such as potential energy [153].

Descriptors of atomic environments. Developing a 
single NN for the prediction of global potential energies 
is only reasonable for low-dimensional conformational 
spaces. To overcome such limitations, a couple of design 
elements of an NNP had to be revised. Instead of using 
the Cartesian coordinates of each atom of a system, a new 
descriptor was developed as input for NNs that describes 
the atomic interactions of an atom with its surrounding 
atoms within a certain cut-off radius. This describes the 
“short-range” energy of that atom, which can be regarded 
as the full potential energy of the atom under the assump-
tion that most of its interactions take place in a localized 
chemical environment. For most systems, using a cut-off 
radius between 6 and 10  Å, errors in potential energy 
in the order of around 0.1  kcal/mol are observed. Such 
a cut-off radius is large enough to describe both cova-
lent and close-contact non-covalent interactions of each 
atom. As an alternative, atom-dependent cut-off radii 
could be defined [154].

The structural information within such an atomic envi-
ronment can be taken and converted into a suitable input 
for NNPs. This led to the development of atomic environ-
ment descriptors: different ways in which the features of 
an environment are described and compiled, as to dis-
criminate different atomic configurations. Important to 
consider is that input descriptors for high-dimensional 
systems need to fulfil three requirements: translational, 
rotational, and permutational invariance. In ML tech-
niques, this is not self-evident, given that such algorithms 

simply perform calculations on certain input numbers, 
and so if these numbers change, the output changes also. 
Many such descriptors of atomic environments conform-
ing to the three invariances have been developed, but 
the first descriptor that was developed for the construc-
tion of HDNNPs is still a widely used descriptor type for 
NNPs. These are the atom-centered symmetry functions 
(ACSFs) [154, 155].

Atom-centered symmetry functions. In this 
descriptor, a functional form called a cut-off function 
is used to define a certain cut-off radius, at which all 
values decay smoothly to zero (Fig. 10). Within this cut-
off sphere, all positions of the neighboring atoms can be 
described using two symmetry functions called radial 
ACSFs and angular ACSFs. A radial ACSF is a sum of 
the products of Gaussians and cut-off functions for all 
the atoms in the cut-off sphere. A Gaussian describes 
the distance between the central atom of the atomic 
environment and its neighbor atom, whilst ensuring 
decay to zero in value and slope towards the cut-off 

Fig. 10 Schematic representation of radial and angular ACSFs [153]. 
In this example, the ACSFs are defined for the central atom (red circle) 
of the system (blue box). A cut-off radius C (blue dotted line) defines 
which neighboring atoms (green circles) are included in the atomic 
environment of the central atom, and thus in the calculation 
of the ACSFs. The radial ACSF is the sum of the products of Gaussians 
and cut-off functions for all atoms within the atomic environment, 
with the Gaussians describing the distances R between the central 
atom and each neighboring atom (red arrows), whilst the cut-off 
functions ensure decay to zero in value and slope towards the cut-off 
radius. The angular ACSF is the sum of the products of the cut-off 
functions and the angles A between the central atom and pairs 
of two neighboring atoms (green curved arrows)
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radius. Summing all atomic interactions within the cut-
off sphere leads to all the information being contained in 
a single function value, no matter how many atoms are 
present in the cut-off sphere. Thus, the radial ACSF can 
describe the distances of neighboring atoms to a central 
atom in one continuous value. With this, it is still not 
possible to distinguish different atomic environments 
in which the same atoms are at the same distances from 
the central atom, but under different angles from each 
other. For this, an additional angular ACSF is used, which 
is a sum of the products of all the terms that describe 
the angles between the central atom and pairs of two 
neighboring atoms with a cut-off function. The two 
ACSFs together can describe the atomic environment 
of each atom in a system and can be used as input for 
the development of a ML potential. A more detailed 
characterization of ACSFs can be found in literature 
[153–155].

Second-generation NNPs. With these new descriptors 
acting like a local structural fingerprint of the atomic 
environment to be considered for the determination of 
atomic potential energy contributions, HDNNPs can be 
developed. It is possible to use a separate DFCNN for 
each atom in the system for the expression of the atomic 
energy contributions. For each atom, the Cartesian 
coordinate vector gets converted to a vector of symmetry 
functions. This forms the input for an atomic NN that 
outputs an atomic energy contribution. Per atomic NN, 
two to three hidden layers with 15 to 45 neurons each 
can predict very accurate atomic potential energies. The 
atomic NNs are trained in such a way that an atomic NN 
has the same architecture and weight parameters for all 
atoms of a certain chemical element. This ensures that 
all atoms of an element are chemically equivalent and 
that their potential energy contributions are conforming 
to permutational invariance by only being a function of 
their atomic environment. After summation of these 
contributions, a “short-range energy” of the system is 
determined, which is regarded as the total potential 
energy of the system in the case of second-generation 
HDNNPs (Fig. 11A). This architecture ensures that such 
an HDNNP is applicable to systems containing a variable 
number of atoms, as for each element an atomic NN is 
trained, and for each atom in a given system an atomic 
NN of that element can be included. This also allows for 
the application of HDNNPs for systems that are larger 
than those used for training the weight parameters. Such 
an architecture is also well suited for parallelization [153].

Third-generation NNPs. Even though second-
generation HDNNPs are quite capable of accurately 
describing potential energies by only considering atomic 
interactions in a short-range sphere, for many systems 
long-range electrostatic and dispersion interactions are 

also crucial. In third-generation HDNNPs, NNs were 
developed to define environment-dependent atomic 
charges, from which long-range electrostatic energies 
can be calculated without truncation. Calculation of 
these atomic charges is done by a second set of atomic 
neural networks. They process the atomic environment 
of each atom of a system (e.g., a vector of ACSFs) with 
their weights trained in a different fashion compared 
to the atomic potential energy NNs, in order to output 
an atomic charge for each atom [153, 156, 157]. First, 
the atomic charge NNs are trained based on reference 
atomic charges of a reference dataset, as calculated by a 
reference electronic structure method (e.g., DFT). From 
the reference total potential energies, the short-range 
energies within a given cut-off radius are extracted. 
This is done by removing the electrostatic energies as 
computed by the charges given by the atomic charge 
NNs. The same is done for the short-range forces, by 
calculating the electrostatic forces and removing them 
from the reference forces. These short-range energies and 
forces are then used for the training of the short-range 
atomic NNs. When applying the new third-generation 
HDNNP architecture, the set of atom-specific symmetry 
functions are used as input for both the atomic charge 
NNs and short-range atomic NNs simultaneously, as to 
compute both the short-range and electrostatic energies 
separately. These can then be summed to yield the total 
potential energy of the system (Fig. 11B).

The need to use reference partial charges for the train-
ing of the atomic charge NNs can at first sight appear 
to be a serious drawback, seeing as different electronic 
structure calculation methods can yield different par-
tial charges. However, most methods provide very simi-
lar partial charges for large interatomic distances, the 
distances of interest to the atomic charge NNs (beyond 
a given cut-off distance). The architecture of these 
HDNNPs is thus quite robust when it comes to choos-
ing different reference electronic structure methods for 
training. Even though third-generation HDNNPs are a 
clear advancement in accuracy of the calculated potential 
energies in comparison to second-generation HDNNPs, 
they are not frequently used. The reduction of the energy 
errors often doesn’t weigh up to the need to train a sec-
ond set of NNs, as this increases the computational cost 
of the technique significantly. NNPs that want to achieve 
a high transferability towards a wide range of organic 
molecules could still benefit nicely from considering 
more long-range interactions [152, 153, 158].

Fourth-generation NNPs. Partial charge 
determination in third-generation HDNNPs is dependent 
on local chemical environments. However, in certain 
systems long-range charge transfers can be significant. 
For example, ionization states could have an impact on 
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the charge distribution of the entire system, leading to 
the charges of atoms being dependent on structures of 
the system outside their local chemical environment. 

For such systems, second- and third-generation 
HDNNPs provide incorrect potential energies. Thus, 
fourth-generation HDNNPs were developed to tackle 

Fig. 11 A Overview of 2nd generation HDNNP architectures, in which the Cartesian coordinate vectors of the atoms of a system of interest get 
converted into a vector of ACSFs, to form the input for individual atomic NNs. These DFCNNs predict the potential energy of each separate atom 
in the system, delivering the total potential energy of the system when these atomic energies get tallied up. The atomic NNs are trained in the same 
manner per chemical element. B Overview of 3rd generation HDNNP architectures, expanding upon 2nd generation HDNNPs by not only using 
atomic NNs to predict atomic potential energies per atom of a system, but also atomic charge NNs to predict atomic electrostatic energies. This 
enables the NNPs to describe more long-range interactions in the system. The short-range potential energies and total electrostatic energies are 
summed up to provide the total energy of the system. The atomic charge NNs are trained in a different manner per chemical element than atomic 
NNs [153]



Page 26 of 44D’Hondt et al. Journal of Cheminformatics           (2025) 17:47 

systems with non-local charge dependencies. A fourth-
generation HDNNP architecture is similar to third-
generation HDNNPs in the sense that its total potential 
energy is once more a sum of short-range energies 
and long-range electrostatic energies but determined 
differently [153, 159]. Similar to second-generation 
HDNNPs, an architecture is built in which the atomic 
environment of each atom in a system serves as input 
for independent atomic NNs. However, these NNs are 

trained to output atomic electronegativities, reproducing 
a reference dataset obtained from a reference electronic 
structure method (e.g., DFT). These environment-
dependent atomic electronegativities are used in a charge 
equilibration scheme that depends on the global system 
in question. This means that certain calculations on these 
electronegativities lead to atomic charges, from which 
the long-range electrostatic energy of the system can 
be calculated [153, 160]. The short-range energies are 

Fig. 12 Overview of 4th generation HDNNP architectures, similar to 3rd generation HDNNPs in the prediction of both atomic charges and atomic 
potential energies using separate atomic NNs. In this generation, the atomic charge NNs first predict atomic electronegativities that are converted 
to atomic charges through a charge equilibration scheme depending on the global system of interest. The atomic charges then form an extra level 
of input for the atomic NNs predicting the short-range atomic potential energies. These two added elements ensure that the architecture considers 
non-local charge dependencies, resulting in a more accurate total potential energy prediction [153]
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calculated as follows. A vector of symmetry functions per 
atomic environment is used as input for separate atomic 
NNs, this time trained to output short-range atomic 
energies. In these atomic NNs an extra input layer neuron 
is added, feeding as input the atomic charges calculated 
from the charge equilibration as global descriptors for 
changes in the local electronic structure. This ensures 
that both the calculated long-range electrostatic energies 
and short-range energies adapt to redistributions in 
the global charge density (Fig.  12). Fourth-generation 
HDNPPs have a broad applicability and deliver promising 
results for potential energy calculations of organic 
molecules [153, 159].

Active learning. A very important aspect to consider 
is the reference dataset for the training of a HDNNP. The 
systems and their atomic environments used for training 
need to be selected carefully, as their functional forms 
convey how the network learns to define a potential. 
If a relevant conformational space is mapped through 
certain reference systems, then the learned HDNNP 
can be applied to simulations of systems much larger 
than those used for training, as long as those systems 

are combinations of the atomic environments learned 
through the smaller systems. For the most optimal 
composition of a reference dataset for HDNNPs, a 
concept called “active learning” is applied [153]. First, an 
initial starting dataset is developed. If the structure of the 
system to be explored is known, then smaller systems can 
be determined that include atomic environments relevant 
for the actual application (including mutations of those 
systems, such as distortions in the structures). Otherwise, 
classical MD simulations can be run to sample parts 
of conformational space. Still, such an initial dataset 
would be incomplete, lacking certain relevant parts of 
conformational space. This is where active learning as 
defined within the field of NNPs comes in: during training 
of the HDNNP on the initial dataset, it is possible to 
encounter predictions for structures far from the training 
data, due to the nonphysical, unbiased functional form 
of the HDNNP and its highly flexible structure. These 
differences between the predictions and the structures in 
the actual training data can be used to identify structures 
for further description of the conformational space. 
Through the setup of multiple HDNNPs employing 

Fig. 13 Overview of the concept of “active learning” [153]. NNP models with differentiating parameters are trained on an initial reference dataset, 
attempting to capture all the atomic environments relevant for the system of interest to be simulated. Through validation of these models, 
it is possible to determine what data needs to be added to the reference datasets for further refinement of the NNP models. The models try 
to learn to describe an unknown potential energy landscape (red and green curves vs. black curve of top right graph). In the conformational 
regions where the predicted curves differentiate, more information should be provided to the models. These conformations can be obtained 
through additional MD simulations of the reference structures to provide additional atomic environments for further training. When all trained 
models converge to describe one potential energy curve (overlapping curves of bottom right graph), the NNPs are optimized, and a final 
architecture can be selected for the actual application
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different parameters, the initial reference dataset can be 
cheaply expanded to a dataset that properly describes the 
conformational space to be explored. When the different 
HDNNPs all describe a potential energy landscape within 
a certain error threshold, then the HDNNPs are ready for 
the actual application (Fig. 13).

Next to the structures containing the atomic 
environments to be used for training, the training 
dataset should also include reference potential energy 
landscapes as calculated through certain electronic 
structure methods. For condensed systems, DFT is most 
efficient, although still computationally expensive. Active 
learning offers another advantage here, as selecting 
structurally distinct conformations to be determined 
for the improvement of the HDNNP means that only 
calculations for these structures need to be carried out 
[153, 161, 162]. During training, all weight parameters 
need to be optimized, forming a high-dimensional 
optimization problem. The goal is to find accurate local 
minima in the conformational landscape with the use of 
the HDNNP during simulations, which is only possible 
after careful validation throughout the optimization 
procedure. HDNNPs exhibit poor performance when 
it must extrapolate information outside the space of 
the training set, so active learning should tackle such 
problems by determining what structures to add to the 
reference dataset, as to extend the applicability of the 
HDNNP. Thus, building a suitable reference dataset, 
training a set of HDNNPs, as well as validating of those 
architectures are all intertwined processes throughout 
the entire development process of a final HDNNP [153].

NNP summary. In conclusion, the current state-of-
the-art of HDNNPs offers a couple interesting advan-
tages. After training, calculations can be carried out for 
systems that are much larger than those of the reference 
dataset, as long as the atomic environments in question 
are present in the smaller structures of the training set. 
The current architectures are optimal for parallelization. 
More conformations per second can be calculated dur-
ing MD simulations using HDNNPs compared to elec-
tronic structure methods, whilst ensuring high accuracy. 
Even though the same time scales can be obtained using 
classical FFs, there are additional advantages that could 
lead to HDNNPs being a better choice of potential over 
the more conventional methods. HDNNPs don’t need 
knowledge of the physical functional form of the interac-
tions in the system to predict the potential energy with 
high accuracy. Thus, for systems of which the structure 
is not fully unraveled yet, the HDNNP can offer interest-
ing observations. Third- and fourth-generation HDNNPs 
include long-range electrostatic interactions and non-
local charge transfers in their observations, leading to 
even higher accuracies compared to second-generation 

HDNNPs. That said, these calculations require more 
computational power, which imposes a need to evaluate 
case-by-case whether the comparatively small improve-
ment to the accuracy of the potential outweighs the 
longer computation times. Second-generation HDNNPs 
are currently the most employed. It is clear that there are 
still many improvements to be made and challenges to be 
solved in this ever-growing field. Further improvements 
in speed and accuracy could be made, as well as a reduc-
tion in the demanding step of generating large reference 
datasets through electronic structures calculations. It 
could even be interesting to investigate improving the 
descriptions of atomic environments or gaining a higher 
level of explainability of the HDNNP predictions [153].

ANAKIN-ME. HDNNPs have already successfully 
been applied for the simulations of numerous organic 
molecules [152, 158, 163–173]. One such an example is 
ANAKIN-ME (Accurate NeurAl networK engINe for 
Molecular Energies) or ANI for short, a HDNNP trained 
to be a highly transferable architecture for the potential 
energy predictions of organic molecules [152, 171]. By 
now it has been trained on an extensive range of atomic 
environments of seven elements (H, C, N, O, F, Cl, and 
S), which together make up about 90% of drug-like mol-
ecules. It can make predictions with accuracies compa-
rable to DFT calculations at much higher speedups (∼10 
[6] factor speedup compared to DFT), and that for sev-
eral benchmark systems [171]. These calculations still ask 
more computational time than traditional FF methods.

NNP/MM. Recently, a hybrid method was devel-
oped to combat this issue. NNP/MM is a combination 
of NNPs and molecular mechanics (MM) calculations, 
where only the most relevant portions of a protein or 
protein–ligand complex get simulated using NNPs (e.g., 
the binding pocket), whilst the other parts of the system 
are simulated with the faster traditional FF calculations. 
This ultimately boosts the efficiency [172]. Such a hybrid 
approach has already proven feasible for accurate relative 
binding free energy calculations, demonstrating higher 
performance over calculations done on pure MM runs, 
albeit at slower computation times [173].

DL‑guided analysis of MD trajectories
Up until this point, DL techniques have been shown to 
be applicable in several different ways in computational 
chemistry. They could aid in virtual screening tests, guide 
MD simulations to sample specific system states, or even 
for the calculation of potential energies for simulations. 
A last facet of the applicability of DL to be explored in 
this review is its ability to aid in analyzing data created 
by MD simulations. MD simulations are powerful tools 
for gaining a better understanding of systems at the 
molecular level, but efficient sampling of the dynamics of 
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such systems often requires many trajectories to be cal-
culated. This generates massive amounts of data. On top 
of that, oftentimes a study wants to observe very specific 
dynamic elements, e.g., the difference in conformations 
formed by a protein after ligand binding. Such differ-
ences could be extremely subtle, involving only small and 
specific parts of the system. Finding such low-density 
signals in big datasets often proves to be a difficult chal-
lenge. It is here that DL tools can form a valuable asset. 
NNs can find complex patterns in high-dimensional 
datasets, where humans normally would run the risk of 
overlooking relevant information and introducing human 
bias in the analysis. DL techniques can thus form inter-
esting tools in steering the characterization of large, 
high-dimensional datasets. Such approaches have been 
employed successfully several times in recent research. 
The following paragraphs will go over a couple interest-
ing examples and approaches of how to apply DL tech-
niques for the data analysis of MD simulations.

CNN by Plante et  al. Plante et  al. employed a DL 
approach when analyzing the trajectory data of MD sim-
ulations run on G protein-coupled receptors (GPCRs) 
[174]. They attempted to uncover GPCR conformational 
differences when different ligands are bound to certain 
GPCRs, as to better understand functional selectivity and 
further the rational drug design targeting these receptors. 
To enhance the analysis of these ligand-bound GPCR 
MD trajectories, DNNs were trained. They learned to 
classify picture-like representations of the GPCR states 
(with ligands removed) into categories divided by which 
ligands the NN predicts that protein state is bound to. If 
it is understood how the NN makes its classification deci-
sions by computing what parts of the protein the NN pays 
most attention to, then structural motifs that indicate the 
subtle differences in structural dynamics of the GPCRs 
when binding to different ligands will reveal themselves.

This design approach was applied to two well-
characterized GPCRs. MD simulations were run 
on models of the proteins inserted in a membrane-
like structure and docked with ligands representing 
functionally-selective classes (i.e., a full agonist, an 
inverse agonist, and a partial agonist). From the MD 
trajectories, conformations were extracted to create 
datasets containing tens of thousands of datapoints 
per protein, further divided into training, validation 
and test sets. After extracting the ligands from each 
trajectory datapoint, it was chosen to then convert the 
data into a 2D picture-like format for CNN training. 
Such a transformation is obtained by generating a 2D 
picture, containing as many pixels as the protein in 
question contains atoms, and representing each atom 
by coloring each corresponding pixel with RGB values 
according to the XYZ coordinates of the atom. Each pixel 

always represents the same atom of the system. Before 
this conversion is carried out, each atom is subjected 
to a positional and orientational scrambling procedure 
to remove translational and rotational bias from the 
original trajectory. Together with a label of the ligand 
that was bound to the conformation in question, these 
2D representations formed the input for the CNN and 
the loss optimization process. Per protein, a densely 
connected CNN was created and tested, based on an 
established implementation called DenseNet [175]. 
Each conformation was classified purely on structural 
differences into categories predicting to what ligand that 
conformation must be bound to. After optimization with 
the training and validation sets using their corresponding 
ligand labels, the accuracy of the developed CNNs 
was evaluated using the test sets. The networks of both 
proteins were capable of correctly labelling more than 
99% of the test set conformations.

Now that NNs are created that can accurately predict 
these pharmacological class labels, the key factor that 
makes this analysis technique so interesting lies in the 
determination of the molecular features that led to those 
predictions. For this, a sensitivity analysis was carried 
out through saliency mapping, computing the gradient 
of the NN classification score for a specific label with 
respect to each of the pixels of the input image [176]. 
The more attention the network paid to a certain pixel 
for the determination of the class label, the higher this 
gradient will be. Thus, attention maps can be created, 
highlighting the pixels with the highest gradients, 
which allows for determination of the atoms that are 
important for a certain classification decision. From 
this, it becomes possible to analyze and evaluate the 
structural features that were deemed important for the 
network when specific ligands are bound to the protein 
in question (Fig. 14). For both GPCRs, the regions most 
relevant for the binding of full agonists, inverse agonists, 
and partial agonists became easily traceable, and were 
analyzed in detail. It was shown that though similar 
structural motifs are involved in the pharmacological 
response of GPCRs of different receptor families, the 
receptors still react differently to the binding of similar 
ligand classes. Despite the limited scope of the current 
framework, from the analysis it can be suggested that 
this method is generalizable and is of interest for further 
studies regarding functional selectivity of GPCRs. In 
a similar vein, the same research group developed the 
interesting Rare Event Detection protocol, employing an 
unsupervised ML technique called non-negative matrix 
factorization [177, 178].

GLOW. Do et al. developed the “Gaussian accelerated 
molecular dynamics, deep Learning and free energy 
prOfiling Workflow”, or GLOW, to predict molecular 
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determinants and map free energy landscapes of 
biomolecules [179]. This study once more focused 
on GPCRs, attempting to observe the impact of the 
binding of allosteric ligands on the structural dynamics 
of GPCRs. For this, GLOW was developed and used 
for the characterization of the activation and allosteric 
modulation of the adenosine  A1 receptor  (A1AR). 
Information was to be obtained about the dynamic 
structural differences of the GPCR in four different 
settings: (1) when bound to an agonist; (2) an agonist and 
an intracellular G protein; (3) an agonist, an intracellular 
G protein, and a positive allosteric modulator; and (4) an 
antagonist. Gaussian accelerated MD simulations were 

carried out on these systems. The obtained trajectories 
were transformed into a representation suitable as input 
for a DNN. For 150,000 selected frames of each system, 
the residue contact maps were calculated using MDTraj 
and Contact Map Explorer [180]. Such a 2D binary matrix 
represents all the distances between each possible pair of 
amino acid residues. The obtained residue contact maps 
were converted to grayscales images, split into training, 
validation, and test sets, and then formed the input for 
CNN architectures. After training, the overall accuracy 
of the final network when classifying the validation set 
for each system was over 99%.

Fig. 14 Overview of the MD trajectory data analysis workflow developed by Plante et al. [174] Ligands representing functionally-selective 
classes (e.g., full agonists, inverse agonists, partial agonists) are docked onto proteins of interest to create systems for MD simulations. Relevant 
frames from those simulations are selected for the development of DL training datasets. From these frames the ligand atoms are extracted, 
but a label is provided with each frame detailing the class of the ligand previously bound in the conformation to allow loss optimization. The 
protein conformations undergo a positional and orientational structure scrambling procedure to remove bias, after which they are translated 
into a 2D picture-like format. Each pixel in a picture represents an atom of the protein conformation, with its RGB values corresponding to the XYZ 
coordinates of the atom. A CNN model based on the DenseNet architecture is then developed and trained on the pictures and class labels 
to predict the label of the ligand that was bound in a conformation. After optimization, the network’s decisions can be analyzed using saliency 
mapping, as to show the protein regions/structural features relevant for the binding of different ligands
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The next step of GLOW involves analyzing which 
residues the developed DNN pays most attention to, 
and thus which structural elements undergo dynamical 
changes when bound to specific ligands. For this, first 
hierarchical agglomerative clustering was used to cluster 
the conformations obtained for each system. For the 
most populated structural cluster of each system, the 
residue contact map was used to calculate attention 
maps of residue contact gradients, determined by 
calculating those gradients via gradient-based pixel 
attribution. Thus, the pixels with the highest gradient 
will be those deemed most important by the network for 
its classification decisions. Several criteria were used to 
then select residue contacts for the computation of the 
free energy profiles of each system, by reweighting the 
Gaussian accelerated simulations via the PyReweighting 
toolkit [181, 182]. By determining the most important 
residue contacts, it became possible to more efficiently 
study those structural dynamics relevant in GPCR 
activation and allosteric modulation. It also allowed 
for the determination of potential free energy surfaces. 
Descriptions were made about the loose coupling of the 
extracellular domains that bind ligands, as well as the 
intracellular domains that bind G proteins during GPCR 
activation. It was also described how the extracellular 
loop 2 plays a critical role in the allosteric modulation of 
 A1AR. The binding of the positive allosteric modulator 
was seen to stabilize the GPCR-G protein complex 
by increasing agonist binding affinity and reducing G 

protein mobility. In this manner, GLOW provided further 
insight on top of confirming findings seen in previous 
studies. In summary, a workflow like that of the study of 
Plante et al. was described with GLOW but showed the 
variety possible for choosing how to adapt MD trajectory 
data into a suitable input for DNNs. It also showed how 
the decision-making process of the DNN can be analyzed 
in different ways to gain a better understanding of the 
structural dynamics of protein systems [174, 179].

DL-RP-MDS. Whereas the previous workflows 
focused on uncovering the structural dynamics of 
proteins related to ligand binding, MD simulations and 
DL analysis tools can also be massively useful in other 
related areas of computational chemistry. Tam et  al. 
developed the Deep Learning Ramachandran Plot-
Molecular Dynamics Simulations workflow, or DL-RP-
MDS, for the functional classification of genetic variants 
(Fig.  15) [183]. Many of the currently identified genetic 
missense variants are simply classified as variants of 
uncertain significance, seeing as functional information 
is lacking to properly determine their impact. To 
overcome this limitation, the research group focused 
on developing a new platform for the high-throughput 
classification of genetic variants, currently targeting 
the classification of missense variants into benign and 
deleterious subgroups. Previously, the research group 
had developed RP-MDS [184]. To measure the impact 
of genetic variants on protein function, they postulated 
that this impact is reflected by the stability of the protein 

Fig. 15 Overview of the DL-RP-MDS method developed by Tam et al. [183]. To measure the impact of missense variations on protein function, 
an AE architecture was built and trained. It takes as input the Ramachandran plots of conformations of the query protein with a missense variation 
of interest, generated using MD simulations. Through its reconstruction of the input via its encoder and decoder layers, it learns a low-dimensional 
latent representation of the Ramachandran plot input data. This latent space forms the input of a DFCNN classifier that predicts the variants 
of the protein to either be deleterious or undefined (i.e., benign)



Page 32 of 44D’Hondt et al. Journal of Cheminformatics           (2025) 17:47 

structure. Thus, MD simulations were run on query 
proteins with missense variations of interest. The torsion 
angles φ and Ψ of the protein secondary structural 
backbone throughout the obtained trajectories were 
assimilated to form Ramachandran plots. Alterations 
that could be seen in the backbone of the proteins 
reflected the impact of the swapped amino acids. When 
attempting to classify those mutations as either benign or 
deleterious, some problems quickly became clear. It was 
difficult to manually analyze small structural changes and 
their impact on the function of the protein. Even more 
difficult was setting a cut-off at which mutations were 
seen as benign or pathogenic, certainly if for a specific 
protein not enough mutations were known as “training 
data”. These types of limitations could be overcome with 
the power of DL. Thus, this follow-up study set out to 
teach an AE architecture to generate a probabilistic 
classification, based on Ramachandran plots from 
MD simulations of proteins and their known missense 
variant structures. After training, the AE had learned to 
encode the complex torsional configurations observed 
in the Ramachandran plots into a low-dimensional 
latent representation. This reduces the complexity of 
the original plots but retains crucial information. The 
latent space then formed the input of a DFCNN classifier, 
tasked with learning to classify the data by predicting the 
probability of the variants as being either deleterious or 
undefined (i.e., benign).

Through thorough validation, the DL-RP-MDS method 
was shown to be able to successfully classify missense 
variants into benign or deleterious mutations with an 
accuracy of over 98%. This computational method was 
extensively compared to RP-MDS and 22 other in silico 
genetic variant classification methods and was shown 
to have the highest performance of all. It reached the 
highest sensitivity and specificity out of all the methods, 
as long as a balanced amount of training data was pro-
vided. The major advantages of this in silico method are 
that it overcomes for the most part the overprediction 
problem of deleterious variants (by enhancing the benign 
training data using a generative sampling technique), it 
sees an improvement in accuracy over all other in silico 
methods, and it provides a continuous value for its clas-
sification predictions. The method showcases the need 
of such classification methods to be gene-specific, con-
sidering the intrinsic structural differences between the 
genes. However, limitations are still present. The classi-
fication may still be skewed towards deleterious variant 
predictions. Pathogenic variants may also not influence 
the structure of the corresponding protein, not allow-
ing the network to recognize it as pathogenic. Lastly, 
the model needs lots of finetuning per specific gene and 
protein. In summary, the study showed that structural 

change is a valuable property for variant classification, 
and that this analysis workflow is readily applicable for 
the classification of other unclassified missense variants. 
Venanzi et al. also focused their work on predicting the 
impact of point mutations on the activity of proteins 
[185]. To address this protein engineering challenge, 
they employed many parallel ML techniques [amongst 
which a multi-layer perceptron (MLP)]. In this process, 
they noted the importance of dynamical information 
gained through MD simulations in addition to traditional 
sequence and structural information for the training and 
testing of qualitative ML models.

Discussion on dimensionality reduction tools. Fleet-
wood et al. made an extensive analysis comparing many 
ML techniques as dimensionality reduction tools for 
streamlining the analysis and feature extraction process 
of MD simulations [186]. Multiple DNNs were discussed 
in the paper. They divided the techniques discussed in 
their review into two categories: supervised and unsu-
pervised learning. Within the supervised learning cat-
egory, they included MLPs, and within the unsupervised 
learning category, they included restricted Boltzmann 
machines (RBMs) and AEs. The performances of all 
the different ML tools were benchmarked on a newly 
developed toy model mimicking MD simulations. These 
benchmarks were used to build a checklist to aid other 
researchers in making a more well-thought-out deci-
sion when choosing a ML technique for trajectory data 
analysis.

First, the unsupervised learning methods, RBMs 
and AEs, were evaluated. When employing Cartesian 
coordinates as input type for the training of NNs, it 
quickly became clear that it was very difficult for the NNs 
to distinguish the atomic features important to dynamics 
seen in the toy model systems from those irrelevant. 
This once more shows that Cartesian coordinates form 
a bad descriptor of an atomic environment for DL 
model training. However, a performance similar as with 
principal component analysis was obtained when using 
interatomic distances as input features. For the AE, 
performance dipped the larger the system became for the 
training of the NN, indicating that AEs are more difficult 
to train on higher dimensional systems. When looking 
at the supervised learning methods, MLPs were easily 
successful at identifying the most important features 
from systems for both Cartesian and internal coordinate 
input features. However, it did also identify irrelevant 
atoms as important, indicating lower specificity for this 
technique. In general, unsupervised learning methods 
seemed to underperform compared to supervised 
methods in cases where the labels of the input data 
points were known (in this context meaning that the 
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most important features in a certain state of a system 
were known), seeing as they can’t employ this valuable 
information.

Many different versions of the NNs were tested through 
the variation of different hyperparameters. From this, 
it was concluded that optimization of the hyperparam-
eters to a certain degree led to improvements in perfor-
mance, but that small changes around the most optimal 
values only resulted in small changes with regards to 
which features were deemed important by the network. 
Conclusions from the toy model analysis showed the 
importance of only using appropriate input parameters 
for DL training (e.g., internal atom distances, backbone 
dihedral angles). It also showed that it isn’t always neces-
sary to invest many resources in finding the most optimal 
set of hyperparameters for a NN, as long as the hyper-
parameters are properly tuned to some degree. And 
lastly, that the choice of ML technique or NN depends 
on the information available for training (e.g., choos-
ing between unsupervised and supervised learning). It 
appears most useful to combine multiple ML/DL tech-
niques, forming a cohesive picture when combined. To 
this end, the research group developed a checklist to help 
other researchers in identifying the most optimal ML/
DL techniques to help solve their research questions. The 
underlying message of the review conveys the immense 
usefulness of ML/DL tools in aiding along the data anal-
ysis of biomolecular simulations, as long as it is merely 
used as a toolbox to aid scientists in their analysis and 
not deployed autonomously.

Summary. This past section offered a non-exhaustive 
look into how different DL techniques could be employed 
to aid in the analysis of MD trajectory data for a multi-
tude of research purposes. It is clear that many differ-
ent options can be considered, depending on the input 
features available for training. Testing multiple different 
architectures and combining the insight they offer should 
be considered the ideal workflow, more valuable than 
spending the same number of resources on perfecting the 
hyperparameter optimization of a single network. Con-
verting the trajectory data into suitable input features 
should be regarded as essential to the success of these 
analysis techniques.

Review highlights
Relevance of DL implementations and key toolset
In the current age of Big Data, ever-growing amounts of 
data are available in the fields encompassing computa-
tional chemistry, transforming DL into a very powerful 
and advantageous technique to implement in many dif-
ferent workflows. In silico techniques already comple-
mented in vitro and in vivo techniques within the fields of 

biochemistry and medicinal chemistry, validating results 
and delivering valuable additional insights. However, 
many of the widely employed techniques come with their 
own limitations. Hardware limitations restrict the types 
of algorithms that can be used, limiting in their own right 
the level of accuracy that can be achieved within reason-
able computation times. One way in which similar or 
even higher levels of accuracy can be reached at faster 
speeds is through the implementation of AI, of which 
DL is by now a well explored and validated avenue. All 
the different DL architectures are focused on employing 
NNs to extract useful patterns or information from input 
data to then make informed decisions or predictions. 
The large amounts of data needed to train DL models for 
various processes is becoming more readily available by 
the day, and research in the field of XAI and Interpret-
able Machine Learning allows for more transparent mod-
els from which more reliable conclusions can be drawn 
(as further discussed by Jiménez-Luna et al. for the field 
of drug discovery) [187]. This review discusses how DL 
could be implemented in important in silico molecular 
modelling techniques such as VS and MD simulations to 
improve drug discovery workflows.

The most important tool in the toolkit of a scientist 
who is looking to implement DL techniques into their 
workflows, is the dataset to train their model. Given the 
fact that a DL model is a data-driven intelligent system, 
it can only be as powerful as the data that is fed to it. 
Thus, to properly develop a NN, a dataset of high qual-
ity is certainly as vital as the code to set up the network. 
Picking out the right dataset, both in terms of quality as 
well as quantity, is a key first step in the development of 
a DL model. It is vital to reflect upon the data required 
in terms of what information it can provide to the NN 
and how this information reflects onto the subject the 
network needs to be trained on. The quantity of data in a 
dataset can vary wildly from a couple hundred examples 
to billions of data points. More data means more com-
putational time needed to train a model but could on the 
other hand be interesting for better generalization of the 
NN. The quality of the data is very important as well and 
often requires pre-processing steps to eliminate noisy 
data points and wrong labels. A dataset can be manually 
created depending on the type of project to be executed, 
but there are also many high-quality repositories avail-
able online that provide well-maintained, high-quality 
datasets for training AI models. Examples of such reposi-
tories are the UCI Machine Learning Repository, Kag-
gle and the Google Dataset Search program [188–190]. 
Within the field of drug discovery, compound libraries 
can vital, of which ChEMBL, PubChem, and ZINC data-
bases are good examples [12–17]. However, care should 
be taken to mix data from different sources, as very 
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recently it has been shown that this can lead to adding 
more noise to the data [191].

Once a dataset has been thoughtfully selected for the 
development of a deep learning model, the data needs to 
be further pre-processed to create highly curated and bal-
anced data. This comes in the form of formatting, elimi-
nating data points with missing values or assigning actual 
values to those that are missing. Another important fac-
tor to pay attention to is the presence of skewed data in 
datasets. It is crucial to balance out such inequalities in 
the data by down sampling the majority class and upscal-
ing the minority class with certain factors. This is done 
to avoid bias of the model towards the majority class 
(e.g., active or inactive compounds, bound or unbound 
ligands) [192]. Feature scaling is also an important pre-
processing step to keep track of, as most DL algorithms 
benefit from learning features that are similar in scale. 
Features from different objects can only be properly com-
pared if the other attributes of the objects are similar in 
context, ensuring that each attribute will have an equal 
contribution to DL model predictions. Feature scaling is 
most often done through normalization and standardiza-
tion techniques. Normalization binds all values between 
[0,1] or [−1,1], whilst standardization transforms the data 
to have a zero mean and variance of one [193]. Finally, 
care needs to be taken to split up the entire dataset into 
three subsets: a training, validation, and test set. All three 
sets, though possibly differing in size, need to be simi-
lar to each other and may not contain skewed data. The 
model can then be iteratively trained and validated on 
the training and validation subset, whilst optimizing its 
hyperparameters: a process called cross-validation. The 
test set is reserved for the final test of the model before 
use [194, 195].

Of course, data isn’t the only important element needed 
for the development of DL applications within the field of 
computational chemistry. Throughout the “Deep learn-
ing models applied to molecular modelling” section, 
many different tools were shown to be vital for the setup 
of VS steps, MD simulations, and the DL models weaved 
into the workflows of the discussed research examples. 
Table 2 gives a noncomprehensive summary of all these 
mentioned tools, including software libraries, analysis 
tools, databases and benchmark datasets, to introduce 
researchers to the enormous toolkit at their disposal.

DL and VS
There are many ways in which DL could improve VS 
steps. DL models could form a primary screening step, 
mimicking either LBVS or SBVS steps in narrowing down 
a large library of compounds to a more concise dataset 
that could then be used for traditional VS methods. DL 
model predictions ask less computational time than 

traditional docking screens, so this hybrid method could 
improve the throughput rate of an entire VS approach. 
Another way in which DL could be implemented for VS 
steps is by using generative models to generate a dataset 
for traditional VS methods. A large compound library 
could be used to train a generative learning model to 
generate its own compounds with specific, predefined 
characteristics (e.g., compounds with binding capacity 
towards the target protein, synthesizable compounds, 
drug-like molecules). Caution with this method of 
sampling is warranted, as this generative step forms 
the first step of a long drug discovery process, so it 
is advantageous to sample enough of the chemical 
landscape as to not overlook promising molecular 
structures.

A DL model could also be developed to perform a 
task similar to a docking screen and predict either bind-
ing affinities of complexes, or even a best fitting binding 
pose. A final approach could go even further than this 
and use generative models to develop molecules that 
optimally fit within a binding pocket of interest. While 
these last options are incredibly powerful, seeing as they 
entirely eliminate the need for traditional docking com-
putations and are thus capable of the highest speedups, 
they do require careful consideration throughout their 
development. The training dataset for the models needs 
to be heavily curated to avoid overfitting or skewering, as 
to allow for proper generalization of the model to obtain 
accurate results when applying it to external data. Most 
models still have a long way to go, but models like Dif-
fDock and AlphaFold 3 are the current state-of-the-art 
performing docking pose predictions and protein–ligand 
binding affinity predictions, while outperforming tra-
ditional docking methods in accuracy, as well as speed. 
Both form interesting applications for new drug devel-
opment projects. A summary of the methods discussed 
throughout the “Deep learning and virtual screening” 
section is given in Table 3.

DL and MD
Imbuing MD simulations and their analyses with DL 
approaches can be compelling for a plethora of reasons. 
Observing biological/biochemical processes by employ-
ing classical MD simulations is not self-evident, requiring 
long computational time periods. Even though hard-
ware is improving, and enhanced sampling MD methods 
provide new ways for better sampling of longer time-
scales, DL has now also become a feasible and interest-
ing approach. Instead of trying to reach convergence on 
the sampling of a certain process of interest simply by for 
example running enough parallel simulations from dif-
ferent starting points, it is now possible to guide along 
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Table 2 Summary of the tools mentioned throughout this review used to setup VS steps, MD simulations, or DL models

This is a noncomprehensive list, meant to inspire researchers of the range of tools at their disposal. It is divided into (1) software libraries used to develop ML/DL 
models, (2) the various mentioned VS tools and (3) MD tools, (4) databases useful for training DL models, in general as well as (5) compound library databases, and 
lastly (6) mentioned tools useful for benchmarking certain DL models

Name DL/VS/MD-tool Description Application example(s)

ML/DL software libraries

 PyTorch [6] Open-source ML/DL framework for NN development and training [37, 141]

 TensorFlow [5] Open-source ML/DL framework for NN development and training [137, 140, 174, 179]

VS tools

 AutoDock Vina [196, 197] Open-source program for molecular docking [39, 40, 43, 53, 81]

 SMINA [19] Fork of AutoDock Vina focused on improving scoring functions and energy 
minimization

[106, 110]

 GNINA [20, 198] Fork of SMINA, employing CNNs for improved support of scoring functions 
and ligand optimization

[106, 110]

 QuickVina 2 [199] Fork of AutoDock Vina using heuristics to reach significant speedups at similar 
accuracy

[47]

 QuickVina-W [21] Update of QuickVina 2, providing the ability to dock blindly if the docking site 
is unknown

[106, 110]

 GLIDE [22] Schrödinger software package for ligand-receptor docking [106, 110]

 RDKit [23] Open-source cheminformatics toolbox [34, 47, 53, 106]

 Open Babel [24] Open-source cheminformatics toolbox [79]

 OEChem KT [25, 200, 201] OpenEye Scientific programming library for chemistry and cheminformatics [103]

 PaDEL [38] Open-source software for calculating molecular descriptors and fingerprints [37, 39]

 AutoClickChem [48] Currently out-of-date open-source software for automated in silico chemical 
synthesis

[47]

MD tools

 GROMACS [134] Open-source software for high-performance MD simulation and output 
analysis

[183]

 Amber [135] Suite of biomolecular simulation programs [179]

 NAMD [136] Open-source software for high-performance simulation of large biomolecular 
systems

[137, 174]

 MDTraj [180] Open-source Python library for MD trajectory manipulation and analysis [179]

 PyReweighting [181] Open-source Python toolkit to facilitate the reweighting of accelerated MD 
simulations

[179]

General databases for ML/DL development

 UCI ML repository [188] Collection of accessible databases for ML/DL training and analysis

 Kaggle [189] Data science community platform

 Google Dataset Search [190] Search engine for freely available online data

Compound library databases

 ChEMBL [12–14] Manually curated database of bioactive molecules with drug-like properties [36, 37, 39, 53]

 PubChem [15] World’s largest free chemical information database [36]

 ZINC [16, 17] Curated collection of commercially available chemical compounds for VS [47, 53, 174]

 PDBbind [35] Collection of experimentally measured binding affinity data for biomolecular 
complexes

[34, 79, 81, 106, 110]

 Selleck [202] Bioactive compound libraries that consist of small molecules with validated 
biological and pharmacological activities

[39]

 TargetMol [44] Research supplier for compound libraries of small molecule compounds [43]

 UniProt [203] Freely accessible resource for protein sequence and functional information [64]

Benchmarking sets

 Astex Diverse Set [82] Diverse, high-quality test set for the validation of protein–ligand docking 
performance

[79]

 PoseBusters [114] Python package to perform standard quality checks on DL-based protein–
ligand docking methods

[112]

 CASF-2016105 Open-access benchmark to assess and compare scoring functions in several 
metrics

[104]
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Table 3 Summary of DL models mentioned throughout the “Deep learning and virtual screening” section of this review used to aid in 
performing VS workflows

DL-VS method/tool Description

LBVS-type screening step

 IVS2vec [34] DFCNN that uses as input ligand compound vectors generated by Mol2vec (a ML method producing high-
dimensional embeddings of molecular structures) and is capable of a binary protein classification: proteins 
with either a high or a low possibility of binding with a query ligand

 DEEPScreen [36] Collection of 704 CNNs, each an individual predictor of favorable interactions between a query protein 
and small molecule ligands

 DeepScreening [37, 39, 40, 42] Freely accessible web server capable of training DL models for either classification tasks or regression tasks. 
For classification tasks, DFCNNs perform binding probability predictions on a provided chemical library. 
For regression tasks, RNNs generate a de novo compound library and then perform binding probability predic-
tions against a query protein

 Drug repurposing DFCNN 
by Zhang et al. [43, 45]

DFCNN that uses as input ligand compound vectors generated by Mol2vec and that is capable of predicting 
protein–ligand binding probabilities. It uses only molecular and chemical information of the compound vectors, 
not considering spatial information

 DeepBindBC [43, 45] DFCNN that uses as input protein–ligand complex structures as generated by AutoDock Vina (thus considering 
spatial information) and that can estimate protein–ligand binding probabilities

Generative model for VS steps

 GAN by Andrianov et al. [47] GAN that consists of an AE encoder and DFCNN discriminator, that is able to generate molecular fingerprints 
of compounds similar to those from its training set, as to then identify comparable compounds from existing 
compound libraries for further use in a drug discovery workflow

 LSTM RNN by Arshia et al. [53] LSTM RNN retrained through DTL from a network called LSTM_Chem capable of capturing the features 
of SMILES molecular representations. It was retrained through 10 generations of refinements to learn to gener-
ate SMILES of unique, original and valid compounds, each generation with better binding affinity to a query 
protein

 WAE by Das et al. [64] A type of VAE with a GRU encoder and decoder, able to capture the features of short peptide sequences (max. 
25 amino acids). Using this model’s latent space and four bidirectional LSTM classifier models, the architecture 
can generate diverse, valid AMPs with broad-spectrum potency and low toxicity, used for further in silico, in vitro 
and in vivo testing

Binding affinity predictor

 DeepBindRG [81] ResNet that uses as input 2D binding interface-related matrices of protein–ligand complexes and predicts their 
binding affinity

 Pafnucy [79] Model built of convolutional and dense layers, capable of using 4D input information (3D coordinates 
and an additional feature vector) to predict the binding affinity of protein–ligand complexes

 AEV-PLIG [104] Attention-based GNN model that uses as input protein–ligand interaction graphs to capture the interplay 
of interactions determining binding affinity and predict binding affinities for the query complexes

Pose predictor

 EquiBind [106] Combination of a graph matching network and GNN that uses as input protein–ligand complex graphs to per-
form one-shot predictions of the most optimal binding poses of query ligands in proteins (without binding 
affinity values)

 TANKBind [107] Similar GNN approach to EquiBind, using an additional bias parameter set to better prevent steric clashes 
and unrealistic conformations during the one-shot binding pose predictions. It also includes an additional 
module that allows for binding affinity predictions

 DiffDock [110] Diffusion generative model that starts with random conformations of a query ligand docked onto a protein 
and uses a reverse diffusion process to sample realistic protein–ligand binding poses and iteratively refine 
the system towards a most optimal final binding pose prediction

 AlphaFold 3 [112] Attention-based architecture capable of predicting the 3D structure of proteins with unknown tertiary and qua-
ternary structures based on their amino acid sequence, as well as predict interactions with other proteins, small 
molecule ligands, nucleic acids, and modified or non-canonical residues

Generative model to replace VS steps

 TargetDiff [119] 3D equivariant diffusion model that can generate 3D molecular structures befitting a query protein binding site, 
together with a binding affinity estimation

 PILOT [120] 3D equivariant diffusion model that can generate 3D molecular structures befitting a query protein binding site 
(while maintaining high synthetic accessibility), together with a binding affinity estimation

 Pocket2Mol [121] E(3)-equivariant generative network that consists of a GNN generating 3D molecular structures befitting a query 
protein binding site (while maintaining drug properties such as drug likeness and synthetic accessibility) 
and a sampling algorithm that helps sample structures conditioned on the query pocket representation
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This is a noncomprehensive list of available models, meant to inspire researchers of the range of techniques at their disposal. It is divided into (1) models used 
to perform LBVS-type screening steps, (2) generative models used to generate datasets for further VS steps, (3) models used to predict binding affinity values of 
complexes or (4) predict poses of ligands within query proteins, and (5) generative models used to entirely replace other VS techniques, generating molecules that fit 
within a binding pocket of interest

Table 3 (continued)

DL-VS method/tool Description

 FRAME [124] Series of SE(3)-equivariant generative networks capable of generating 3D molecular structures befitting a query 
protein binding site. From a starting molecule, the architecture selects locations on which to add certain 
molecular fragments to better fit a protein pocket in question, until a certain user-specified goal is reached (e.g., 
molecular weight)

 TacoGFN [122] GFlowNet-based approach that can generate 3D molecular structures befitting a query protein binding site 
combined with a binding affinity estimation

 AHC [127] Reinforced Genetic Algorithm employing neural models to build, evolve and optimize 2D molecular structures 
with binding affinity to a query protein through attempting to optimize a structure-explicit scoring function

 AutoGrow 4 [126] Genetic Algorithm that evolves and optimizes 2D molecular structures from random seeds to compounds 
with binding affinity to a query protein through attempting to optimize a structure-explicit scoring function

Table 4 Summary of DL models mentioned throughout the “Deep learning and molecular dynamics simulations” section of this 
review used to aid in performing MD workflows

This is a noncomprehensive list of available models, meant to inspire researchers of the range of techniques at their disposal. It is divided into (1) models used for 
enhanced conformational sampling, (2) models used as NNPs and (3) models used to guide the analysis of MD trajectories

DL-MD method/tool Description

DL-guided enhanced conformational sampling

 AE by Degiacomi [137] AE model with a latent space encoded from the flattened Cartesian coordinate systems of MD simula-
tion frames of a query protein, from which new protein conformations could be interpolated as start-
ing structures for follow-up MD simulations

 DeepDriveMD [140] Workflow for protein folding problems employing a CVAE model with a latent space encoded 
from contact map representations of the flattened Cartesian coordinates of MD simulation frames 
of a query protein. These conformations get clustered in the latent space in regions with biophysi-
cally relevant features, from which protein conformations could be identified as starting coordinates 
for follow-up MD simulations, in order to speed up the sampling of a protein folding process

 VDE workflow by Sultan et al. [141] Workflow to sample the most important dynamical behavior of a protein, employing a VDE architec-
ture with a latent space encoded from through-tICA-dimensionality-reduced conformational states 
of the query protein. The latent coordinate of the VDE was used as CV for well-tempered metadynam-
ics simulations for the sampling of the most important dynamics of the system

Neural network potentials

 ANAKIN-ME [152, 171] Accurate NeurAl network engine for Molecular Energies or ANI, a HDNNP trained to be a highly trans-
ferable architecture for the potential energy predictions of organic molecules

 NNP/MM [172] A hybrid method combining NNPs and MM calculations, where specific regions of a system are simu-
lated using NNPs and the other parts through faster traditional MM calculations, in order combine 
the accuracy and efficiency strengths of the two separate simulation methods

DL-guided analysis of MD trajectories

 CNN by Plante et al. [174] CNN that helps uncovering conformational differences when different ligands are bound to a query 
protein. The model is trained on 2D scrambled pixel maps of protein conformations of protein–ligand 
complex MD simulations to predict what ligand that protein state is bound to. This architecture is cou-
pled to an explanation technique highlighting the protein regions in each frame that the network 
paid attention to for its classification decision. This allows for the analysis of structural features possibly 
undergoing dynamical differences for each simulation system type

 GLOW [179] CNN that helps uncovering conformational differences when different ligands are bound to a query 
protein. The model is trained on 2D residue contact maps of protein conformations of protein–ligand 
complex Gaussian accelerated MD simulations to predict what ligand that protein state is bound to. 
This architecture is coupled to an explanation technique highlighting the protein regions in each 
frame that the network paid attention to for its classification decision. This allows for the analysis 
of structural features possibly undergoing dynamical differences for each simulation system type, 
as well as map the free energy landscapes of these conformations

 DL-RP-MDS [183] Workflow for the functional classification of genetic missense variants into benign or deleterious sub-
groups. MD simulations are run for a query protein and its missense variations of interest. Then, an AE 
is trained on the Ramachandran plots of the obtained simulation frames. The latent space of the AE 
is connected to a classification DFCNN to predict the missense variants to be either benign or deleteri-
ous
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the sampling in the simulations using DL techniques. 
Generative models can be trained to identify intermedi-
ate states in such processes based on data provided by 
an initial set of MD simulations, after which follow-up 
simulations can be initiated from these identified states. 
Such models can also be trained to predict the impact 
of system perturbations. If, for such approaches, general 
DL models can be developed that are both scalable and 
explainable, and that can be retrained through DTL for 
specific research objectives, then significant speedups 
in these sampling methods can be achieved. Concurrent 
MD/DL workflows do require efficient workload and per-
formance balancing.

A second approach is the use of NNPs during MD 
simulations: NNs capable of predicting the molecular 
energies of a system at each timestep of a simulation. 
Such predictions can offer QM-levels of accuracy at 
high speedups compared to traditional QM or possibly 
even MM methods. NNP models can describe atomic 
interactions without bias, and if trained in a broad 
manner through a suitable reference dataset built using 
active learning, they can be transferred between systems. 
ANI is a current state-of-the-art, highly transferable 
architecture that was built for simulations of organic 
molecules [152, 171]. Hybrid NNP/MM methods are also 
possible, combining the strengths of both methods in a 
synergistic manner, much like QM/MM methods [172].

Lastly, DL models can be immensely useful for the 
analysis of MD trajectory data. MD simulations often 
cause large amounts of high-dimensional data to be gen-
erated, and DL tools can aid in finding complex patterns 
that other analysis methods could overlook. DL models 
can be trained to make certain classification or regres-
sion predictions on the trajectory data, after which XAI 
techniques can be employed to determine the features 
present in the data that led the model to make those pre-
dictions. Such techniques can be feature-engineered to 
lead researchers to investigate specific elements of the 
data, based on what the model deems important. The 
most valuable approach appears to be to train multiple 
architectures on the same data and combine the obser-
vations they provide to reach satisfactory conclusions. If 
the features of the trajectory data can be properly con-
verted into suitable input descriptors for DL training, 
then these approaches can form powerful techniques for 
guiding along difficult analyses. A summary of the meth-
ods discussed throughout the “Deep learning and molec-
ular dynamics simulations” section is given in Table 4.

Conclusions and future perspectives
This review focused on DL implementations throughout 
molecular modelling techniques and provided extensive 
examples of recent approaches in the field found in 

literature. It becomes clear that not only the type of 
architecture employed and the setup of the model is 
critical to the success of an approach, but also the quality 
and quantity of the provided data. The way in which that 
data is converted into suitable input for a NN is equally 
important. These different elements require carefulness 
at each step, trial-and-error and troubleshooting as 
needed, and a critical mind that vigorously analyses any 
obtained results. There are still many improvements to 
be made in all the approaches discussed above, but at a 
rapid pace, DL is transforming the field of computational 
chemistry and accelerating the discoveries made within.

Among these improvements is the need for more 
high-qualitative data, certainly in the field of medicinal 
chemistry/biochemistry, such as protein–ligand binding 
affinity data. More generalized benchmarking datasets 
and tools for DL applications are also desired, since it 
is currently often a difficult challenge to compare differ-
ent models. During model development, more emphasis 
should be placed on transferability of models, allowing 
for the training of general architectures for a certain 
task (e.g., generative molecular design, generalizable 
MD analysis techniques, or faster, more accurate HDN-
NPs). These types of models could then be incorporated 
into generalized workflows, allowing research groups 
to compare their findings. Another critical element to 
incorporate in new research is a focus on explainabil-
ity and transparency. Using the available techniques in 
the field of XAI to ensure it is understood how a model 
comes to its predictions is essential to prevent models 
that are either too general, overfit, or introduce bias in 
their results. Lastly, this field would benefit from more 
easily accessible DL tools, making the training and 
development of models more comprehensive for the 
general scientific community.
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