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ABSTRACT: We present our efforts in computational drug design against dipeptidyl peptidase 4 (DPP4),
DPP8 and DPP9. We applied cosolvent molecular dynamics (MD) simulations to these three protein targets of
interest. Our primary motivation is the growing interest in DPP8 and DPP9 as emerging drug targets. Due to
the high similarity between DPP4, DPP8 and DPP9, DPP4 was also included in these analyses. The cosolvent
molecular dynamics simulations reproduce key ligand binding features and known binding pockets, while also
highlighting interesting fragment positions for future ligand optimization. The resulting fragment maps from the
cosolvent molecular dynamics are freely available for use in future research (https://github.com/UAMC-
Olivier/DPP489_cosolvent_MD/). Detailed instructions for easy visualization of the fragment maps are
provided, ensuring that the results are usable by both computational and medicinal chemists. Additionally, we
used the fragment maps to search for the binding pockets with significant potential using an algorithmic
approach combining top fragment locations. To discover novel binding scaffolds, a limited pharmacophore
screening was performed, where the pharmacophores were based on the analyses of the cosolvent simulations.
Unfortunately, inhibitory potencies were in the higher micromolar range, but we optimized the resulting
scaffolds in silico using relative binding free energy calculations for future inhibitor design and synthesis.

■ INTRODUCTION
We have applied a structural drug design methodology, namely
cosolvent molecular dynamics (MD), to the drug targets
dipeptidyl peptidase 4 (DPP4), 8 and 9. These three peptidases
are structurally very similar serine proteases and belong to the
DASH (dipeptidyl peptidase 4 activity/structure homologues)
family. The three enzymes occur mainly as homodimers. Their
structural similarity is demonstrated in Figure 1 (Panel A).
DPP8 and DPP9 are emerging drug targets due to their putative
role in cell death. Cryo-EM structures have shown that DPP9
sequesters the inflammasome sensors NLRP1 (nucleotide-
binding oligomerization domain, leucine-rich repeat and pyrin
domain containing protein 1) and CARD8 (caspase recruitment
domain-containing protein 8) by forming protein−protein
complexes.1−3 These protein−protein complexes are visualized
in Figure 1 (Panels B,C). DPP9 inhibition activates the
inflammasome pathways, leading to pyroptotic cell death. As
nonselective DPP8/9 inhibition leads to pyroptosis in acute
myeloid leukemia (AML) cell lines, DPP9 is a potentially
interesting drug target for AML.4,5 CARD-8 mediated
pyroptosis induced by DPP9 inhibition has also been observed
in HIV-1 infected cells, further enhancing the interest in DPP9
as an effective drug target.6,7 Whether DPP8 also sequesters the
NLRP1 and CARD8 inflammasome sensors in a similar manner
is currently unknown as no such structures are available, but
similar interactions are not inconceivable due to their high
similarity. Additionally, DPP8 inhibition is linked to apoptotic

cell death in multiple myeloma cell lines.8,9 In our opinion, these
discoveries warrant further investigation into DPP8 and DPP9
as drug targets. Further information with regards to the natural
substrates of DPP8 and DPP9 can be found in specialized
reviews.10,11

Contrary to DPP8 and DPP9, DPP4 is a clinically validated
drug target. Four FDA approved DPP4 inhibitors (saxagliptin,
alogliptin, linagliptin and sitagliptin) are available for treatment
of Type 2 diabetes. The EMA has approved a fifth DPP4
inhibitor, namely vildagliptin, for clinical use in Type 2 diabetes.
DPP4 inhibitors control blood glucose levels by elongating the
half-life of the incretin hormones GLP-1 and GIP.14−17 Given
that DPP4 cleaves the incretin hormones, DPP4 inhibition will
elongate the half-life of GLP-1 and GIP. Because DPP4 is a
clinically validated drug target, novel insights into the important
ligand binding features of DPP8 and DPP9 are most interesting.
We did include DPP4 in our analyses due to the previously
highlighted high similarity with DPP8 and DPP9. DPP4
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selectivity remains a challenge in the design of DPP8/9
inhibitors, and henceforth selectivity descriptors are of interest.
Currently described DPP8/9 inhibitors that show no

significant affinity toward DPP4 mainly comprise isoindoline-
based scaffolds. An overview of the inhibitor structures is given
in Figure 2. The binding poses of the inhibitors in Figure 2 are
shown in Figure S1 (Supporting Information), overlapped with
the pocket identifiers of DPP8 and DPP9. The first DPP8/9
inhibitors with selectivity against DPP4 were allo-ile-isoindoline
(1) and 1G244 (2).18−20 Further inhibitor design started from

these lead structures, where 1G244 modifications led to small
improvements in the DPP8 over DPP9 selectivity.21 A third
DPP8/9 inhibitor scaffold was discovered by our research group
by changing the cyanopyrrolidine moiety of the DPP4 inhibitor
vildagliptin to isoindoline.22 Follow-up research further ex-
plored the structure activity relationship of this line of
compounds.23 Compound 3 (UAMC-4918) was discovered
this way. Compound 3 has a previously unseen DPP9 over
DPP8 selectivity with a selectivity index of∼180 (DPP9/8), but
unfortunately this molecule has poor pharmacokinetic proper-
ties. Researchers from Merck discovered IceD-2 (4), another
isoindoline containing compound.6 Iced-2 is a highly potent
DPP9 inhibitor with significant but less pronounced DPP9-to-8
selectivity. The last important molecule is a 4-oxo-β-lactam
inhibitor (5), which has the highest DPP8 over DPP9 selectivity
(SI DPP8/9 = 21) known to date.24 We are of the opinion that
this inhibitor overview highlights the limited scaffold diversity in
DPP8 and DPP9 inhibitors, and therefore we believe that more
scaffold diversity for DPP8/9 inhibitors is desirable.
The research presented in this work aims to gain further

knowledge in the important binding features of the known
ligands, to explore possible allosteric binding pockets and to
discover novel ligand scaffolds. To achieve these three purposes,
cosolvent MD is a suitable technology. To discover novel
scaffolds, the results from the cosolvent MD are combined into
suitable queries for subsequent pharmacophore screening.
The idea behind cosolvent MD is to calculate the preferred

binding locations of small organic fragments, also called probes,
on a target of interest. These preferred locations can be
calculated in an a posteriori analysis of MD simulations in which
the solvent is a water-ions-probes mixture instead of the
standard water-ions mixture, hence the term cosolvent
simulations. Cosolvent MD has been used for (allosteric)
binding pocket identification and to explain ligand binding
modes in earlier research.25−29 An elaborate review of available
literature in cosolvent MD has been written by Ghanakota and
Carlson.30

Significant attention has also been focused on the develop-
ment of pharmacophore hypotheses based on the favorite
fragment locations in cosolvent MD.31−33 In ‘SILCS-Pharm’,33

the cosolvent-derived pharmacophore hypotheses generally
outperformed other docking screening approaches. A variety
of analysis methodologies for cosolvent MD simulations is freely
available, such as the Cosolvent Analysis Toolkit (CAT),34

DrugGUI35 or Probeview.36 This work builds further upon an
analysis methodology by Bakan et al.35 This analysis method-
ology makes use of the concept of interaction spots. Interaction
spots can be understood as the central voxels within probe
density areas. The interactions spots are then combined by the
following algorithmic approach:
(1) Identification of the voxel with the lowest Grid Free

Energy (GFE), where the GFE is a probe density scoring
metric. This voxel will act as seed.

(2) The next lowest interactions spot within 6.2 Å is added to
the “pocket”.

(3) Step 2 is repeated until the pocket is comprised of a
desired number of spots (usually seven or eight). An
addition of an interaction spot to that pocket is rejected if
the effective charge would become lower than − 2e.

The main modification added in this work is the
implementation of a backtracking search to identify the optimal
combinations instead of the greedy search performed by Bakan

Figure 1. Panel (A) Protein structure overlap between homodimers of
DPP4 (green cartoon, PDB code: 6B1E12), DPP8 (cyan cartoon, PDB
code: 6EOP13) and DPP9 (magenta cartoon, PDB code: 6EOR13).
High structural similarity is observed between DPP4, DPP8 and DPP9.
Panel (B) Cryo-EM structure of the DPP9-NLRP1 complex (PDB
code: 6X6A1). NLRP1 is represented as orange spheres. Panel (C)
DPP9-CARD8 complex (PDB code: 7JKQ3). CARD8 is represented as
yellow spheres. Note that an NLRP1 tail inserts in the DPP9 side
opening to the active site, but that such interactions do not form in the
DPP9-CARD8 structure.
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et al.35 In addition, hydrophobic probes were also added to the
analyses. The full implementation of our methodology for
combining the probe densities can be found in the methodology
section.
The application of the cosolvent MD simulations serves the

purpose of investigating three research objectives: (1) gain
insight into the important binding features, (2) exploration of
alternative binding pockets, and (3) novel scaffold discovery.
The main targets are DPP8 and DPP9, but due to their high
similarity we are also interested in DPP4, as we believe insights
into DPP4 could be useful for the design of selective inhibitors
for DPP8/9.

■ METHODOLOGY
Cosolvent Molecular Dynamics. Cosolvent MD simu-

lations were performed on the three targets of interest (DPP4,
DPP8 and DPP9) with three different cosolvent mixtures. The
cosolvent mixtures are summarized in Figure 3. The first
cosolvent mixture is identical to the mixture used by Bakan et
al.,35 and is composed of the water-soluble organic fragments
isopropanol, isopropyl ammonium, acetate and acetamide. The
second cosolvent mixture is a mixture between water and
isobutane, while the third mixture is composed of water and
benzene. The Plumed Automatic Restraining Tool (PART)37 is
used to prevent hydrophobic aggregation in the second and third
cosolvent mixture.
The protein structures of DPP4 (PDB: 6B1E12), DPP8 (PDB:

6EOP13) and DPP9 (PDB: 6EOR13) were prepared in an
elaborate procedure. The full homodimer structure was used
and all ligands and crystal waters present were removed. The

mutation in amino acid position 36 in the DPP4 structure was
restored to the original amino acid. Missing loops in the proteins
were modeled using the ModLoop webserver.38,39 Optimal flips
of histidine, asparagine and glutamine were estimated using
Molprobity and then checked manually.40 Amino acid
protonation states were calculated using PROPKA and H++
and then analyzed manually.41−45 If two flips or protonation
states were both likely to occur, the first state was assigned in the
first monomer and the second state in the secondmonomer. The
target protein was placed in a cubic box with periodic boundary

Figure 2. Structures of selected DPP8/9 inhibitors.6,18−20,23,24

Figure 3.Overview of the three different cosolvent mixtures applied on
all three targets. The cosolvent probes in the first mixture are
isopropanol, isopropyl ammonium, acetate and acetamide. The
cosolvent molecule in the hydrophobic mixture is isobutane, while
benzene is the probe in the aromatic mixture. In the hydrophobic and
aromatic mixes restraints from the Plumed Automatic Restraining Tool
(PART)37 were used to prevent hydrophobic aggregation. The listed
timings are the lengths of the MD simulations.
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conditions (PBC), where the principal axis of the protein was
placed parallel with an axis of the box. The box size was chosen in
such a way that any protein element was at least 12 Å away from
the edge of the box. Initial box sizes were then slightly enlarged
further, if required, to equalize probe concentrations across the
DPP4, DPP8 and DPP9 systems.
The hydrophilic mixture (isopropanol, isopropyl ammonium,

acetate and acetamide) was simulated using GROMACS
2021.346,47 using a time step of 2 fs. Fifty different replicas
were simulated for the hydrophilic mixture. The chosen force
field was CHARMM36m (July 2021 version), and the probes
were parametrized using CGenFF version 4.6.48−52 The force
field cutoff was set to 12 Å with a smooth switching to zero
between 10 and 12 Å. The Particle Mesh Ewald (PME)53

methodology was used to treat the electrostatics, where the
short-range cutoff for electrostatics was set to 12 Å. The probes
were assigned different random starting locations in each of the
replicas, after which the remainder of the box was filled with
neutralizing sodium ions and original TIP3P waters.54

Composition of the systems are shown in Table 1. These
probe concentrations are in accordance with the reference
publication of the hydrophilic mixture.35

After assigning the probe locations, each of the 50 different
replicas was minimized in two phases. In the first phase a
maximum of 50,000 steps of steepest descent were performed
where the waters were modeled as flexible waters. The steepest
descent step size was set to 0.01 Å. In the second minimization
phase, LINCS constraints55 were applied to bonds involving
hydrogen, water flexibility was removed and the step size was
increased to 0.1 Å. LINCS bond constraints to bonds involving
hydrogen were also used in all subsequent simulations. After
minimization, an equilibration was performed in three phases,
applied separately to each replica: an NVT equilibration with
protein heavy atom restraints, anNPT equilibration with protein
heavy atom restraints and an NPT equilibration without
restraints. The NVT equilibration of each replica had a length
of 1 ns. Temperature coupling was performed using the V-

rescale thermostat56 with a reference temperature of 300 K and a
time constant of 0.1 ps. Protein and nonprotein elements were
coupled separately. Replicas were equilibrated in the NPT
ensemble for a total of 2 ns, split evenly between the restrained
and unrestrained simulation. Pressure control was performed
using the C-rescale barostat57 with a reference pressure of 1.0
bar and a time constant of 2.0 ps. Actual production runs lasted
360 ns per replica, leading to a total simulation time of 18 μs for
each target.
The methodologies for the hydrophobic and aromatic

mixtures were very similar to that of the hydrophilic mixture.
System compositions can be found in Table 1. The first and
foremost difference with the hydrophilic mixture is the use of
intermolecular repulsion potentials to prevent lipophilic
aggregation. The methodology to apply intermolecular
repulsion potentials was based on PART37 in combination
with Gromacs 2021.3 patched with PLUMED 2.7.2.58−60 The
default PART repulsion potentials for the production runs were
used, but for the NVT equilibrations a softer potential was
selected with the following parameters: k ≈ 0.02 kcal mol−1 Å−2,
a = 8.0 Å, s = 1.0, e = 2.0. The softer potentials were used to avoid
large forces due to probes inserted close to each other in the
starting structure. The distance calculations were based on the
central carbon of isobutane and on the center of mass of all
benzene atoms. Additionally, only 25 replicas per target for the
hydrophobic and aromatic mixtures were run and the length of
each production run was 200 ns. Consequently, the total
simulation time for each target-hydrophobic and target-aromatic
mixture was 5 μs. The total production simulation time across all
targets and all mixtures was 84 μs.
Calculation of Probe Densities and Binding Pockets.

To calculate the probe densities in DPP4, DPP8 and DPP9, all
trajectories were aligned onto a single reference frame.
Alignment to the reference template was performed using
MDAnalysis.61,62 Subsequently, the MDAnalysis DensityAnal-
ysis class was used to calculate probe densities. Each probe was
binned on a grid composed of cubic voxels with a width of 1 Å,

Table 1. Overview of the System Compositions (Number of Molecules n and Concentration C) for the Hydrophilic Mixture,
Hydrophobic Mixture and Aromatic Mixturea

DPP4 DPP8 DPP9

n C (M) n C (M) n C (M)

hydrophilic mix
isopropanol 3374 1.52 4338 1.53 3856 1.52
isopropyl ammonium 476 0.21 612 0.22 544 0.21
acetate 476 0.21 612 0.22 544 0.21
acetamide 476 0.21 612 0.22 544 0.21
sodium ions 22 44 25
water 96,040 123,480 109,760
hydrophobic mix
isobutane 515 0.23 657 0.23 600 0.23
sodium ions 22 44 25
water 111,755 142,569 130,200
aromatic mix
benzene 515 0.23 657 0.23 600 0.23
sodium ions 22 44 25
water 111,755 142,569 130,200

aConcentrations were determined from the box volumes after the NPT equilibrations (averaged over the replicates). Note that we opted for a
constant number of water molecules per probe molecule similar to the reference publication,35 rather than a constant concentration relative to the
box size. The number of water molecules per probe molecule was set to 20 for the hydrophilic simulation and to 217 for the hydrophobic and
aromatic mix. In the hydrophilic simulation, 70% of the total probe count is composed of isopropanol probes, while the isopropyl ammonium,
acetate and acetamide probe types each represent 10% of the probe count.
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and probe densities were then converted to grid free energies
using eq 1

RT n
n

FE ln
expected

=
i
k
jjjjjj

y
{
zzzzzz (1)

In eq 1, R represents the ideal gas constant, T is the temperature,
n is the calculated density for the grid voxel under study and
nexpected is the expected density, calculated by dividing the total
number of atoms of the atom group in the box by the average box
volume throughout the simulation. Resulting maps were
visualized using PyMol (Version 2.4.1, Schrödinger LLC) and
Vida (Version 5.0.4, OpenEye Scientific63).
Probe densities were combined into predicted pockets using

the concept of combining interaction spots. For all probe types,
except benzene, the position of the central carbon atom was
taken as the center for the density calculations, while for benzene
this was the center of mass. The interaction spots were
determined in an algorithmic way, based on prior research.35

Each probe type was treated separately, and a list of all voxels was
collected with their corresponding GFE values. Interaction spots
were calculated as follows:
(1) Make two copies of the list of all voxels. The first copy will

be immutable and will contain all original voxels (“original
list”), the other copy will be dynamic (“dynamic list”) and
subject to changes in the next steps.

(2) Pick the voxel with the best (most negative) GFE score in
the dynamic list of voxels;

(3) Check whether this voxel has a lower GFE than its
neighboring voxels (note that this criterium was checked
against the original list):
a. If not, then remove the voxel from the dynamic
voxel list;

b. If yes, then add this voxel to the interaction spots
and remove all voxels within the interaction radius

(see Table 2) from the dynamic list of voxels to be
considered;

(4) Return to step 2, unless the next voxel has a GFE > −1.5
kcal/mol

Note that this procedure is similar but not identical to that of
Bakan et al.35 For example, multiple interaction spots from
different probe types for the same voxel were allowed in our
work if different probe types meet all criteria.
Searching for clusters of probe densities, which is of interest

for studying the binding pockets, is a difficult task to perform
manually. When less stringent density cut-offs are used, many
density regions can appear that make manual analysis difficult.

An algorithmic approach is henceforth more suited for this
problem. The algorithmic approach used was based on prior
work,35 but hydrophobic probe locations and a backtracking
algorithm to ensure optimal pocket compositions were added to
the earlier methodology. The algorithmic approach to combine
the interaction spots into pockets was as follows:
(1) Take as input the list of interaction spots;
(2) Pick the interaction spot with the lowest GFE score as

pocket seed;
(3) Keep adding interaction spots within 6.2 Å of the

interaction spots currently in the pocket. Backtrack over
all options for combining interaction spots. Apply the
following rules:
a. A pocket can contain no more than 7 interaction
spots;

b. Two interaction spots need to be at least 2 Å apart;
c. The sum of the number of interaction spots from
the hydrophobic or aromatic type can be at most 4;

d. A pocket can contain maximum one interaction
spot of acetate or isopropyl ammonium.

(4) Pick the pocket with lowest (most negative) sum of GFE
scores and store this pocket for this seed. Remove the
interaction spots forming the pocket. Start again with step
two to look for the next pocket using the next seed spot;

(5) Rank all pockets according to the summed GFE score.
Compared to the original implementation of this algorithm,35

a number of improvements were made. First, information about
hydrophobic probes was added. Second, a recursive search
instead of a greedy search was used when combining interaction
spots into pockets. Third, using the revised concept of
interaction spots ensures that only the strongest probe binding
locations are considered. Finally, the stringent charge require-
ments mimic the protonation status of known DPP inhibitors.
In order to build a pharmacophore model, the locations of the

central carbon atoms alone do not provide sufficient
information. While considering the center of the fragments
works well to identify clusters of fragment densities,
pharmacophore models require not only the locations of the
specific functional groups, but also the directionality of
pharmacophore features for hydrogen bonding groups. For
this purpose, individual atom densities of the functional groups
were also taken into account. An overview of the atoms
considered for the density calculations is provided in Table 3.
Pharmacophore Screening. Selected fragment locations

were converted to PDB format and imported into Maestro
(Schrödinger LLC). The Phase64 pharmacophore screening tool

Table 2. Interaction Radii Used in the Calculation of the
Interaction Spotsa

probe type used interaction radius (Å)

isopropanol 2.60
isopropyl ammonium 2.68
acetate 2.35
acetamide 2.27
isobutane 2.60
benzene 2.50

aInteraction radii of isopropanol, isopropyl ammonium, acetate and
acetamide are based on the values used by Bakan et al.35 Table 3. Overview of the Atoms Used in Density

Calculationsa

probe type atoms considered for density analysis

isopropanol central carbon, hydroxyl oxygen, hydroxyl hydrogen
isopropyl
ammonium

central carbon, nitrogen atom, polar hydrogens

acetate central carbon, oxygen atoms
acetamide central carbon, oxygen atom, nitrogen atom, polar

hydrogens
isobutane central carbon, noncentral carbon atoms
benzene center of mass, individual carbon atoms (ring

orientation)

aCalculating the densities of additional atoms besides the central
carbon enables the study of the preferred orientation of the probe.
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was used for virtual screening of the Chembridge, Enamine Hit
Locator and Asinex databases (approximately 1.8 million
compounds total). Database compounds were minimized, and
their protonation states were calculated using Ligprep.
Following minimization, Phase databases were created and a
maximum number of 100 conformations per compound were
generated, where the energy of each conformation was not
allowed to be more than 3.82 kcal/mol higher than the
minimized structure.
Screening results for the active site models were filtered to

contain a primary or secondary amine, as the current active site
inhibitors for DPP4, DPP8 or DPP9 contain this moiety.
Compound 18 (see Supporting Information) does not satisfy

this criterion, as 18 was a manual addition to the selected
compound pool based on a promising binding posing observed
in early test runs of the protocol. After performing the
pharmacophore screen, the thirty top scoring compounds
according to the PhaseScreenScore were evaluated manually
to determine whether the binding pose was reasonable. This
ranking procedure was repeated for every pharmacophore
model.
This procedure resulted in 24 compounds that were acquired

and submitted for biochemical evaluation. Prior to this, LC-MS
measurements were used to examine compound purities (data
not shown).

Figure 4. Density analysis for DPP4. The following cut-offs were used: 0.03 Å−3 for isopropanol, isobutane and benzene; 0.02 Å−3 for isopropyl
ammonium acetate and acetamide. Panel (A) shows the density locations in the full DPP4 structure (green), for visualization purposes overlaid with
the cocrystallized inhibitor vildagliptin (purple). Boxes are used to highlight the approximate locations of Panels (B−D). Panel (B) highlights the
densities in the active site. A high-scoring isopropanol density close to the catalytic serine can be observed. Additionally, there is a strong isopropyl
ammonium density near the secondary amine of vildagliptin. Panel (C) shows a second cluster of high scoring densities near a known glycosylation site
(Asn 520). Panel (D) zooms into the side entry channel of DPP4, where a strong isopropyl ammonium density can be observed. The color codes
(isopropanol: yellow, isopropyl ammonium: dark blue, acetate: red, acetamide: orange, isobutane: gray and benzene: brown) are shown graphically in
Panel (E). In all panels the arrows indicate the discussed densities.
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Figure 5.Overview of the density analysis for DPP8 (cyan). The following cut-offs were used: 0.03 Å−3 for isopropanol, isobutane and benzene; 0.02
Å−3 for isopropyl ammonium acetate and acetamide. Panel (A) shows the density locations in the full DPP8 structure in complex (solely for
visualization purposes) with the cocrystallized inhibitor 1G244 (green) and the 4-oxo-β-lactam inhibitor 12. Panel (B) shows a close-up of the active
site with 1G244. A high scoring isopropanol density is observed close to the catalytic serine and a high scoring isopropyl ammonium density is located
near the primary amine of the ligand. Note that the density cutoff for isopropyl ammonium was lowered to 0.01 Å−3 in Panel (B). Panel (C) highlights
the location of a cluster of high-scoring densities in the binding pocket of the 4-oxo-β-lactam inhibitor 12. Panel (D) shows a positively charged probe
density located in the side entry channel between the α/β-hydrolase domain and the β-propellor domain. Panel (E) shows the color legend
(isopropanol: yellow, isopropyl ammonium: dark blue, acetate: red, acetamide: orange, isobutane: gray and benzene: brown) graphically. In all panels
the arrows indicate the discussed densities.
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Figure 6. Overview of the density analysis for DPP9 (magenta). The following cut-offs were used: 0.03 Å−3 for isopropanol, isobutane and benzene;
0.02 Å−3 for isopropyl ammonium, acetate and acetamide. Panel (A) shows the density locations in the full DPP9 structure in complex with the
cocrystallized inhibitor 1G244 (green). Panel (B) zooms to the cocrystallize inhibitor (1G244) and highlights that a high scoring isopropanol density is
observed in the active site, and that a high-scoring isopropyl ammonium is located near the primary amine of 1G244. Note that in Panel (B) the
isopropyl ammonium cutoff was reduced to 0.01 Å−3. Panel (C) zooms to the side entry channel in DPP9 and highlights high scoring densities
overlapping with the tail of NLRP1 inserting toward the active site. Note that in Panel (C) all cut-offs were reduced to 0.01 Å−3 except for isopropanol,
for which the cutoff was reduced to 0.02 Å−3. Panel (D) shows a positively charged probe density located in the side entry channel of DPP9. Note that
in Panel (D) the isopropyl ammonium cutoff was reduced to 0.005 Å−3. Panel (E) shows the probe color legend (isopropanol: yellow, isopropyl
ammonium: dark blue, acetate: red, acetamide: orange, isobutane: gray and benzene: brown) graphically. In all panels the arrows indicate the discussed
densities.
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Biochemical Evaluation. DPP4 was purified from human
seminal plasma, as described previously.65 Gateway-entry clones
for human DPP8 and DPP9 were purchased from Dharmacon
(Accession numbers DQ891733 and DQ892325 respectively).
Recombinant human DPP8 and DPP9 was expressed using the
N-terminal BaculoDirect insect cell expression system (In-
vitrogen) in Sf9 cells. Both proteins were purified as described by
De Decker et al.66

Screening of the compounds was performed by kinetic
measurement of the hydrolysis of the chromogenic substrate
Ala-Pro-para-nitroanilide at 405 nm. Substrate concentrations
were chosen to approximate the Km value of the respective
enzyme: 25 μM (DPP4), 300 μM (DPP8) or 150 μM (DPP9).
The buffer for the enzymatic reaction was 0.05 M HEPES-
NaOH at pH 7.4 with 0.1% Tween-20, 0.1 mg/mL BSA and 150
mMNaCl. Compounds were tested in duplicate wells at 10 and
50 μM with a final reaction volume of 100 μL. Each screening
was measured in duplicate. Inhibitors were preincubated with
the enzyme for 15 min at 37 °C. Subsequently, the substrate was
added, and the enzymatic reaction was measured in an Infinite
F200 Pro (Tecan Benelux) for at least 10min at 37 °C.Magellan
software (Tecan Benelux) was used to reduce the kinetic data
into initial velocities (v0, initial velocity in the absence of
inhibitor, vi, initial velocity in the presence of inhibitor). Since
some compounds showed some degree of color, inhibitor blanks
(inhibitor with buffer and substrate) were measured and taken
into account. For every assay measurement, a positive control
was tested. The positive control was sitagliptin (1 and 0.1 μM)
for DPP4 and 1G244 (1 and 0.1 μM) for DPP8 and DPP9.
Alchemical Binding Free Energy Calculations. Based on

the results of the biochemical evaluation (see below), two
compounds were selected for further optimization using relative
binding free energy (RBFE) calculations. New inhibitors based
on the two selected compounds were designed by overlap with
the cosolvent MDmaps and by a qualitative molecular sculpting
procedure based on the target structure. RBFE calculations to
estimate the affinity of the newly designed compounds were
performed using nonequilibrium work calculations,67 where the
hybrid topologies were generated using PMX.68 One ligand per
homodimer was simulated. The protein−ligand systems were
placed in the center of a dodecahedral box, with the size of the
dodecahedron chosen in such a way that any protein element
was at least 12 Å away from the box edge. Similarly, the ligand
systems were also placed in a dodecahedral box of which the size
was chosen in such a way that that any ligand element was at
least 12 Å away from the box edge. Each box was solvated with
TIP3P water54 and sodium and chloride ions were added to
achieve neutrality at an ion concentration of 0.15 M. The
Amber99SB-ILDN force field modified by PMX68,69 and Joung
and Cheatham ion parameters70 was used. Simulations were run
using the GROMACS v2023.3 engine.46,47 Ligand topologies
were prepared using ACPYPE v. 2022.6.6,71 where ligands were
parametrized via GAFF2.72 The force field cutoff was set to 11 Å,
with a smooth switching to zero starting at 10 Å. Electrostatics
were handled using the PME methodology53 with a short-range
cutoff of 11 Å.
For each ligand, four states were simulated (ligand in water λ =

0 and λ = 1, ligand in protein: λ = 0 and λ = 1), and each state was
simulated in four separate replicas. The systems were minimized
using the same procedure as the two cosolvent MD
minimization phases. In the MD simulations, LINCS con-
straints55 were applied to all bonds to ensure constraints to
dummy hydrogens. Prior to the production MD runs, separate

unrestrained NVT (0.5 ns) and NPT (1 ns) equilibrations were
run. In all MD simulations, the V-rescale thermostat56

controlled system temperature with a reference temperature of
298 K and a time constant of 0.1 ps. In all MD simulations except
the NVT equilibration, pressure control was performed using
the C-rescale barostat57 with a reference pressure of 1 bar and a
time constant of 2.0 ps. Following equilibration, conventional
MD simulations for each replica were run. These conventional
MD simulations had a length of 50 ns, and 100 frames were
extracted from each simulation. As four replicates were
performed for each conventional MD run, a total of 400
snapshots were gathered in each state (ligand in water, modified
ligand in water, ligand in protein and modified ligand in
protein). The short transitions were started from these
snapshots and had a length of 50 ps in which statistics about

Hd
d
(with H the Hamiltonian) were gathered.
In the postprocessing stage, work values on the system were

computed from the Hd
d
curves using the PMX analysis tools.68

Forward and the reverse transition data were combined in the
calculation of a ΔG via the Bennett Acceptance Ratio
(BAR).73,74 The ΔΔG value was then calculated by subtracting
the free energy contribution of mutating the ligand in water from
the free energy contribution of changing the ligand in the
protein−ligand complex (ΔΔG = ΔGPL→PL′ − ΔGL→L′). Error
estimates were calculated assuming that the ΔGPL→PL′ and
ΔGL→L′ estimations are uncorrelated. In some cases, a
thermodynamic pathway was constructed over more than one
mutation to connect two compounds. In such cases the ΔΔG
values were summed, and the standard deviation was
approximated by summing the variances of the ΔΔG estimates.

■ RESULTS AND DISCUSSION
Analyzing the Fragment Densities.DPP4.We started the

analyses by inspecting the fragment densities. The high-scoring

fragment densities in DPP4 are shown in Figure 4. High scoring
fragment densities are observed in the active site (panel B),
validating the hypothesis that strong fragment densities should
be observed in relevant binding areas. Isopropanol densities are
observed close to the catalytic center. It is found that, in the case
of the DPP4 simulations, isopropyl ammonium molecules often

Figure 7. Overview of the orientation of the hydrogen bond donor/
acceptor interactions of isopropanol near the catalytic center in DPP9
(magenta cartoon and magenta sticks). The cocrystallized inhibitor
1G244 (green sticks) is shown as a reference. The isopropanol central
carbon density is shown in yellow (cutoff: 0.03 Å−3), the isopropanol
oxygen atom density is shown in red (cutoff: 0.02 Å−3) and the hydroxyl
hydrogen atom is shown in silver (cutoff: 0.02 Å−3).
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reside near the location where the positively charged secondary
amine of vildagliptin is also located. Furthermore, a high-scoring
cluster of fragment densities in a known glycosylation site in
DPP4 (Asn 520) is also observed (Figure 4C). We however

speculate that the therapeutic potential of this pocket is
debatable, as no biological function of the DPP4 glycosylation
sites is known.75 Furthermore, the glycosylation site is located in
a surface pocket, which may prove to be difficult for drugs to
bind due to its large solvent exposed area.
In Figure 4D, a high scoring isopropyl ammonium density in

the side entry channel toward the active site is shown. This
density location is of interest as all FDA and EMA approved
inhibitors of DPP4 (inhibitors vildagliptin, saxagliptin, alog-
liptin, linagliptin and sitagliptin) have a positively charged
moiety. A possible hypothesis could be that this affinity for
positively charged moieties in the entry channel could lower the
energy barrier of the binding process. Additionally, as DPP4
cleaves off a dipeptide from the N-terminus of the substrate, a
similar mechanism could be conceivable for enzyme−substrate
binding processes.

DPP8. In Figure 5, a similar analysis is given for DPP8.
Similarly to DPP4, a density of isopropanol close to the catalytic
serine is observed (panel B), which is in line with the strong
hydrogen bond acceptor character of this catalytic residue. A
strong density of the positively charged probe, namely isopropyl
ammonium, can be found close to the location where the
primary amine of the cocrystallized DPP8/9-inhibitor 1G244 is
found (panel B). A second cluster of high-scoring probe
densities is observed in the region where the 4-oxo-β-lactam
inhibitor 12 (compound 524) likes to reside (panel C). A strong
lipophilic density is observed in the region that corresponds to
the binding pocket of the compound’s naphthalene ring. The
strong isobutane density next to the naphthalene ring hints
toward further optimization with lipophilic substituents on the
naphthalene ring. Next, a positively charged probe density in the
side entry channel between the α/β-hydrolase domain and the
β-propellor domain is found, similarly to DPP4 (panel D).

DPP9.The fragment density map for DPP9 is shown in Figure
6. In accordance with the results in DPP4 and DPP8, a strong
isopropanol density is located close to the catalytic site (panel
B). When investigating this isopropanol density further, it
becomes clear that the isopropanol is acting as a hydrogen bond
donor to the catalytic serine (see Figure 7 below). In DPP4 and
DPP8 similar interactions are found, where in DPP4 a hydrogen
donation toward the hydroxyl group of tyrosine amino acid can
also be seen. In DPP9, the isopropanol density near the catalytic
serine also appears to be acting as a hydrogen bond acceptor
with the hydroxyl of Y644 and possibly with the nitrogen
backbone atom of Y731. Another interesting density cluster is
located in the side entry channel in DPP9, located on the
interface between the α/β-hydrolase domain and the β-
propellor domain. High-scoring isopropanol, isobutane and
benzene probe densities overlap with the location, where the
NLRP1 tail is located when binding (panel C). Finally, and again
in full accordance with the results for the other two targets, a
high scoring positively charged probe density close to the
primary amine of the cocrystallized 1G244 is found (panel D).
The three main conclusions from the density analysis are as

follows:

• Strong scoring densities of isopropanol and isopropyl
ammonium are observed in the main binding pockets of
DPP4, DPP8 and DPP9.

• A positive charge density in the side entry channels of
DPP4, DPP8 and DPP9 is observed.

Figure 8. Highest ranking pockets in DPP4 (panel A, green), DPP8
(panel B, cyan) and DPP9 (panel C, magenta). In all panels, the highest
ranking pocket is shown in gray, the second highest in dark blue and the
third highest in yellow. Panel (A) shows that the top-ranked DPP4
pocket (gray spheres) is located in the active site. The second (blue)
and third (yellow) highest ranked pockets are located near a known
glycosylation site (Asn 520). Panel (B) shows that the top-two pockets
(gray and blue) in DPP8 overlap with the binding location of
compound 5. Panel (C) highlights that the three highest-scoring
pockets in DPP9 are located on the surface of the protein or near the
homodimer interface. In Panel (C) the fourth highest-scoring pocket
(red) is also included, as this is located in the area where the NLRP1 tail
enters in the DPP9 structure (see Figure 1).
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• High scoring densities in alternative pockets are observed,
such as in the 4-oxo-β-lactam inhibitor 12 pocket in DPP8
or in the NLRP1 tail binding area in DPP9.

The probe density maps are freely available at: https://github.
com/UAMC-Olivier/DPP489_cosolvent_MD/.
Pocket Analysis. After visualizing the simplest scoring

metric (probe densities), an analysis was performed to check
whether normalizing the densities for probe concentration via
the GFE value leads to different conclusions. After normal-
ization, it was found that the interaction spots of aromatic rings
in the active sites of DPP4, DPP8 and DPP9 have similar GFE
values to those from the hydrogen bond donors/acceptors
solvents (Figure S2, Supporting Information). This can be
explained by the lower concentration of these aromatic probes,
meaning that normalization to concentration will improve their
relative scoring.
Analyses of the results of the algorithmic approach to combine

interaction spots into binding pockets (see Methodology
section) shows that the pockets that scored the best according
to the algorithm correspond with known binding areas in DPP4
andDPP8 (Figure 8). DPP9 forms an exception to this, as in this
case the highest-scoring pockets are all located on the protein
surface or at the homodimerization interface. High scoring
pockets are also observed near the glycosylation site (Asn 520)
of DPP4 with strong fragment densities (Figure S3 Panels A,B,
Supporting Information). In DPP8, the highest-scoring
combinations of densities are located near the area where the
4-oxo-β-lactam inhibitor 12 is located in its crystal structure. The
models indicate a strongly lipophilic pocket in the binding area
of the ligand’s naphthalene moiety (Figure S3 Panel C). The
third highest-scoring pocket in DPP8 is also located on the
protein surface, indicating a likely spurious pocket.
As the three highest-scoring pockets in DPP9 appear on the

surface or at the homodimerization interface, the fourth highest-
scoring combination of interaction spots was also included for
further evaluation. The fourth pocket is located in the area of the
S’ pockets where the NLRP1 tail enters the side tunnel toward
the active site. The fourth highest-scoring pocket in DPP9 is
visualized in more detail in Figure S3D.
Pharmacophore Screening. Based on the cosolvent MD

results, four pharmacophore models were generated. The first

three models were built upon the respective active site regions,
and the fourth model (the “alternative model”) was built from
the densities that make up the top-scoring pocket in DPP8. An
overview of these four pharmacophore hypotheses is shown in
Figure 9. In the active site pharmacophore models of DPP4 and
DPP9, densities from the S’ pockets were included as these
scored favorably, coupled with a positively charged group near
the isopropyl ammonium densities and either an aromatic ring
or hydrogen bond donor near the catalytic site. In DPP8, we
opted to add pharmacophores in the S2 extended (S2e) pocket,
as in this region notable differences were observed between
DPP8 and DPP9 in the corresponding fragment densities for a
negatively charged probe. Consequently, the negatively charged
probe interaction spot in the DPP8 S2e site was included in the
DPP8 Active Site pharmacophore model. The pharmacophores
in the S2e pocket were coupled with the positively charged
density near the amine groups of the cocrystallized ligands and a
donor or aromatic pharmacophore at the catalytic serine. In the
DPP8 “alternative model”, the strongly scoring density in the
lipophilic pocket binding the naphthalene ring of 4-oxo-β-lactam
inhibitor 12 was coupled to a hydrogen bond donor to the
catalytic serine in the active site. Some strongly scoring
connecting densities were also included.
Based on these four models, four corresponding pharmaco-

phore screens were performed, resulting in a total of 24
predicted hits that were purchased. These compounds, together
with the originating virtual screen sources, are listed in Table S1
(Supporting Information). Out of these 24 compounds, ten
compounds originated from the “DPP4Active Site” screen, eight
from the “DPP8 Active Site”, and four from the “DPP9 Active
Site” screen. The last two compounds were identified by the
“DPP8 Alternative Model” virtual screen.
The results of the in vitro evaluation of the selected

compounds are shown in Table 4. Unfortunately, all tested
compounds were weak binders at best. Compounds 8, 13 and 23
show verymodest binding and were selected for further analyses.
Compounds 13 and 23 have some affinity for a target for which
they were not selected, but this is not surprising given the high
degree of similarity between the targets in the active sites. The
lack of stronger binding hits can have several causes. First, a set
of 24 compounds is a small test set, and therefore it is not

Figure 9. Overview of the four pharmacophore models used in the screening. Note that the color coding is the default Maestro color coding: salmon
spheres as hydrogen bond acceptors, light blue spheres as donors, dark blue spheres as positively charged groups, red spheres as negatively charged
groups, green spheres are hydrophobic features and orange rings are aromatic features. Orientations of the features was based on the orientation spots
(see Methodology section).
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unlikely that based on the underlying hit rate for these enzymes
no stronger binders were discovered. Expanding the set of
selected compounds is a first option for finding stronger binders.
Second, we opted for the chosen methodology for its simplicity
and due to resource constraints. Including a follow-up consensus
scoring docking approach or even short MD studies of the

complexes could further improve the compound selection
procedure.
For the three selected compounds, Phase and Glide docking

poses were compared with each other to check consensus
between both. This was indeed the case for compounds 8 and
13, but for 23 such consensus was not found (Figure 10). Based

Table 4. In Vitro Screening Results for the Selected Compoundsa

vi/v0 (%)

DPP4 DPP8 DPP9

compound concentration (μM) run1 run2 run1 run2 run1 run2

6 50 112 94 92 98 106 107
10 94 97 99 100 105 104

7 50 93 94 95 99 99 100
10 96 96 99 99 103 97

8 50 76 72 89 93 92 95
10 92 91 96 98 100 105

9 50 93 94 97 101 105 104
10 100 96 96 99 105 104

10 50 N.A. N.A. N.A. N.A. N.A. N.A.
10 N.A. N.A. N.A. N.A. N.A. N.A.

11 50 93 93 92 95 102 102
10 101 109 97 98 106 103

12 50 92 102 97 100 102 104
10 87 99 101 100 98 99

13 50 95 99 102 98 81 68
10 99 106 101 98 90 82

14 50 99 101 102 95 91 90
10 107 100 99 101 95 93

15 50 101 100 97 97 95 98
10 101 102 105 102 73 97

16 50 93 93 96 94 99 97
10 99 93 101 99 106 99

17 50 97 96 97 94 105 100
10 96 95 98 98 103 98

18 50 100 97 88 92 97 89
10 93 95 96 100 104 105

19 50 97 104 100 100 105 104
10 96 102 98 100 106 104

20 50 106 102 98 99 92 94
10 105 101 101 101 96 99

21 50 98 102 98 101 95 96
10 96 98 97 102 97 98

22 50 95 100 106 100 97 101
10 98 103 101 97 100 98

23 50 98 101 100 100 87 78
10 101 108 108 102 98 91

24 50 103 110 95 91 97 99
10 94 99 98 99 98 95

25 50 96 98 95 98 95 99
10 101 98 103 101 110 93

26 50 94 100 81 87 92 99
10 94 95 99 94 94 100

27 50 106 96 92 78 92 95
10 102 99 100 87 101 103

28 50 100 97 103 88 102 102
10 95 94 103 94 102 104

29 50 100 95 100 84 92 92
10 101 92 102 97 99 99

aThe compounds’ effect on the enzymatic activity (vi/vo) is shown for two concentrations (10 and 50 μM). Compound 10 did not dissolve in
DMSO and was not analyzed (N.A.). Compound 12 showed some degree of precipitation. Inhibition values in bold indicate the target for which
the virtual screen was designed (see Table S1).
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on this and on the affinity data, we decided to only move forward
with 8 and 13 for subsequent in silico optimization.
Alchemical Free Energy Calculations. As the selected

compounds 8 and 13 were weak binders at best, we decided to
perform further in silico optimization of these compounds. Such
in silico optimization has been shown to successfully turn weak
binders into potent inhibitors.24

Compound 8 Modifications.We simulated modifications in
the DPP4 S1 (Table S2), S1′ (Tables S3 and S4) and S3′ (Table
S5) pockets for compound 8. In the S1 pocket small
nonaromatic rings (30d and 30e; Table S2) are predicted to
cause a small increase in the binding affinity, but not sufficient
enough to obtain the large improvement that is required given
the weak experimental binding potency of 8. When modifying
the moiety in the S1′ pocket by modifying the compound’s
backbone into a carbamide (Table S3) or carbamate (Table S4),
no increase in binding affinities is predicted. By expanding the
scaffold modifications to the S3′ pocket (Table S5), small
improvements in the binding affinity are predicted for the amide
moiety (33f), but these improvements are again not sufficient to
gain the required orders of magnitude in binding affinity.
Compound 13 Modifications. With regard to the in silico

optimization of compound 13, we performed RBFE calculations
to scan modifications in the S1′, S2′ and S3′ pockets. The first
step in the molecular sculpting procedure was to remove the
substituents on the terminating aromatic ring, leading to the
biphenyl-containing compound 34 that has a slightly decreased
binding affinity (Table S6). After removal of all aromatic
substituents, a variety of aromatic substituents were tested and a
nitrogen scan in the S1′ pocket was performed. As can be seen in
Table S7, structures 34b and 34d are promising starting points
with reasonable gains in binding affinity. A similar analysis was
performed for the S2′ pocket, where mutations 35a and 35h
show the strongest gains in binding affinity (−0.9 and−1.6 kcal/

mol, respectively; Table S8). When adding larger chemical
moieties to the S3′ pocket of DPP9, modifications 36a, 36e and
36i are most interesting (Table S9). The effect of removing the
hydroxyl group from compound 13 was computed. The
calculated RBFE results for the corresponding structure 37
indicate that the removal of this functional group does not
improve the binding free energy (Table S10). Finally, Table S11
shows the results of the RBFE simulations when combining
some of the aforementioned modifications. Compound 38a
shows strong gains in binding free energy, hypothetically turning
the compound into a low micromolar or high nanomolar
inhibitor. Compound 38d also has a promising gain in ΔΔG,
and further modifications in the substituents of the terminal
aromatic ring can be explored.
We conclude from the RBFE data that the tested

modifications to compound 8 did not lead to the desired gains
in binding free energy. For compound 13we designed structures
38a and 38d. Both were predicted to lead to significant changes
in binding free energy. Additional combinations (for example,
combining 34d with 36a or 36i) are possibly interesting as well
and are part of future research.

■ CONCLUSIONS
The analyses of the cosolvent MD results showed that strong
densities are observed in the active site pockets of DPP4, DPP8
and DPP9. A hydrogen bond donor/acceptor density close to
the catalytic serine and a positively charged probe density near
important positively charged groups of known ligands were
consistently observed. A positively charged probe density was
also identified in the entry channel. Furthermore, several high-
scoring clusters of densities were observed. All density maps are
made freely available.
When using the fragment locations and their associated GFE

values in an algorithm to identify pockets, the algorithm scored
the orthosteric pocket as the highest-scoring in DPP4. In DPP8,
the pocket with the lowest GFE is located in the 4-oxo-β-lactam
inhibitor 12 binding area. In DPP9, the strongest scoring pocket
is located at the interface between the monomers, and the fourth
highest-scoring cluster of densities is found in the side entry
channel where the tail of NLRP1 enters the DPP9 structure.
As the aforementioned results looked promising, we initiated

a pharmacophore screening from which 24 compounds were
selected. In vitro analyses of these structures showed that the top
compounds were unfortunately only weak binders at best.
Subsequently, these weak binders were modified via RBFE
calculations, resulting in significant gains in binding free energy
with some mutations.
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Overview of the pocket definitions in DPP8 (Panel A,
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the S1 pocket of DPP4 (PDF)

Figure 10. Panel (A) Overview of the docking pose of compound 8
(gold sticks) in DPP4 (green cartoon). Position of vildagliptin
(magenta sticks) is shown as a reference. The pocket identifiers were
determined via the binding mode of the Ile-Pro-Ile substrate in DPP4
(PDB: 1NU876) similar to the methodology of Nabeno et al.77 Panel
(B) Overview of the predicted pose of compound 13 (purple sticks) in
DPP9 (magenta cartoon). The 1G244 pose is shown in green sticks as
reference. The pocket identifiers were also determined via an overlap
with the binding mode of the Ile-Pro-Ile substrate in DPP4. Note that
the designation of S2′ (and of S3′ in the Alchemical Free Energy
Calculations section) is an approximation as Ile-Pro-Ile does not bind in
the S′ pockets beyond S1′.
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