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ABSTRACT: Simulations of membrane proteins have been rising
in popularity in the past decade. Advancements in technology and
force fields made it possible to simulate behavior of membrane
proteins. Membrane protein simulations can now be used as
supporting evidence for experimental findings, for elucidating
protein mechanisms, and validating protein crystal structures.
Unrelated to experimental data, these simulations can also serve to
investigate larger scale processes like protein sorting, protein−
membrane interactions, and more. In this review, the history as well
as the state-of-the-art methodologies in membrane protein
simulations will be summarized. An emphasis will be put on how
to set up the system and on the current models for the different
components of the simulation system. An overview of the available
tools for membrane protein simulation will be given, and current
limitations and prospects will also be discussed.
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1. INTRODUCTION

In the past decade, computational methods have become
increasingly important in the study of proteins and ligand−
protein interactions. The amount of structures that are
deposited in the Protein Data Bank (PDB) has doubled in
the last ten years.1 However, while about 20% of our genes
code for membrane proteins,2 the amount of membrane
protein crystal structures has consistently hovered around 1−
2% of the total available structures. Obtaining crystals of
membrane proteins is still a nontrivial process, hampered by
the fact that membrane proteins are difficult to overexpress in
bacteria, and due to the fact that their hydrophobic surface
imposes the use of detergents to isolate and solubilize the
protein. However, as about half of all available drugs target
membrane proteins, it is imperative to gather more knowledge
on these proteins. Molecular dynamics (MD) simulations offer
a great and distinct approach to investigate the structure of
membrane proteins in ways that are complementary to
experimental procedures. Due to recent evolutions in
computational efficiency and improvements in the force fields,
MD simulations have become a valuable tool.
The first MD simulations of pure lipid bilayers date back to

the 1980s.3 Simulation of a membrane protein by using
continuum electrostatics to mimic a bilayer followed not much
later, while one of the first MD simulations utilizing an explicit
phospholipid model happened over a decade later.4 While the
amount of appropriate force fields was very limited at the time,
the molecular dynamics field has seen a lot of action since then.
Today, a lot of different force fields are publicly available;

many of them are compatible with lipids as well as proteins and
are thus suited for simulation of membrane proteins. In this
review, most of the currently relevant force fields will be
discussed in combination with methods to set up the
phospholipid bilayer system.

2. PREPARING THE MEMBRANE DOUBLE LAYER

2.1. Setting up the Double Layer. A considerable
amount of thought has to be spent to consider the approach
that will be taken for simulating the phospholipid bilayer.
Several different options have been described, and most of
them still see use today. There is no clearly superior method,
and the trade-off is often the recurring one of an increase in
reliability in exchange for an increased computational cost.
A first approach to represent a double layer system is to treat

the membrane as an implicit hydrophobic slab.5,6 Databases
containing membrane protein orientations have been compiled
to facilitate this method,7−9 as well as methods to automate the
prediction of protein orientation.10 While this method is
computationally efficient, it is unable to represent membrane
fluctuations and lacks the specific lipid−protein interactions
that coarse-grained (CG) or atomistic approaches offer. In
another approach, a library of different phospholipid
conformations was created based on the simulation of a pure
lipid membrane simulation. The lipids were randomly
positioned around the membrane protein, and clashes were
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removed followed by a constrained energy minimization
step.11

With the exponential increase in computational resources,
more recent approaches include the self-assembly of the bilayer
on atomistic or CG scales. The atomistic approach is still quite
computationally expensive to apply on a full-sized system,12

but the coarse-grained bilayer assembly methods have seen
widespread adoption. Examples of CG methods include the
self-assembly from a randomly ordered system of phospholi-
pids13 or the insertion of the protein into a pre-equilibrated
membrane followed by a new equilibration.14 MemProtMD is
a web server containing more than 3,000 membrane protein
structures that have been identified in the PDB1 and which
have been inserted into simulated bilayers using CGMD
simulations.15

2.2. Choice of Phospholipids. A lipid double layer
consists of highly varying types of phospholipids depending on
the organism. However, depending on current growth cycle
and environmental factors, even within a species, drastic
differences in lipid bilayer composition have been observed.
In Figure 1 the most important bilayer components are

shown. The amphipathic phospholipids can be divided into
zwitterionic, anionic, and cationic phospholipids. Most
eukaryotic membranes mostly contain zwitterionic phosphati-

dylcholine (PC) and phosphoethanolamine (PE) lipids, with
anionic lipids like phosphatidylserine (PS) being present in the
inner layer in a lesser amount. Sterols also make up a
significant portion of the eukaryotic membrane and are
thought to have a stabilizing function. While often overlooked,
various papers highlight the importance of sterol inclusion and
the effect it can have on protein distribution within a lipid
bilayer.16,17 Generally, bacterial membranes consist of PE
lipids, anionic phosphatidylglycerol (PG) lipids and the
anionic cardiolipin, which substitutes sterols as a membrane
stabilizing component. In bacteria, aminated PG head groups
can sometimes occur and can also make up a major part of
their membranes.
Accounting for the large variety of possible acyl chain types

of phospholipids would result in very complex systems for
simulation. Therefore, the usual approach is to use a palmitoyl
and an oleyl chain in each phospholipid, as these are the most
common acyl chains in many mammalian membranes.
Phospholipids most frequently used in MD simulations include
DLPC (1,2-dilaureoyl-sn-phosphatidylcholine), DMPC (1,2-
dimyristoyl-sn-phosphatidylcholine), DPPC (1,2-dipalmitoyl-
sn-phosphatidylcholine), DOPC (1,2-dioleoyl-sn-phosphatidyl-
choline), POPC (1-palmitoyl-2-oleoyl-sn-phosphatidylcho-
line), and POPE (1-palmitoyl-2-oleoyl-sn-phosphatidylethanol-
amine). When looking at other species, more attention should
be paid to acyl chain composition. For some study cases,
modifications to the acyl chain composition like addition of
polyunsaturated acyl chains can be interesting as they can
significantly affect membrane properties and molecular
processes.18

Another important factor to consider is which force field
parameters will be used for the phospholipids. The parameters
should be fine-tuned depending on the properties that will be
studied. The parametrization of these structures is not evident
as experimental data on phospholipids is very scarce.
Lipidbook is a public repository for force field parameters of
lipids that are of interest when simulating biological
membranes.19

3. SIMULATION SCALES AND CORRESPONDING
FORCE FIELDS

A few decades ago, the utility of MD simulations was limited
since only very short simulation lengths could be achieved due
to limited computational resources. Since then, exponential
growth in computational power, combined with improvements
in parallelization and MD algorithms, have contributed to
speeding up MD simulations. However, while these evolutions
have led to significant increases in simulation lengths and
system sizes, allowing for relevant simulations of systems
containing over 150,000 atoms on microsecond time
scales,20,21 classical MD methods are generally still limited in
regard to the study of membrane proteins. The systems used in
these studies are frequently hundreds of thousands to millions
of atoms in size, while the phenomena one wants to observe
often happen on time scales up to several microseconds.22 One
study aimed at the crystal structure of a light-harvesting
chromatophore involved a system with over 23 million
atoms.23 The simulation length was limited to 150 ns, even
though the Titan cluster was used, which is currently ranked
within the top 10 most powerful computing clusters in the
world. Fortunately, simulation methods that reduce the
complexity of the system have been developed. The concept
of these methods is to group atoms into larger entities for

Figure 1. Phospholipid, which generally consists of a core element,
combined with 2−4 fatty acid tails (R1 and R2) and an optional
headgroup (R3). (Core) A glycerol molecule attached to a phosphate
group forms the core of a general lipid (1), or, in the case of
cardiolipin (2), the core consists of a diphosphatidyl glycerol. R1 and
R2 represent the hydrophobic tails, and R3 represents the variable
phospholipid headgroup. (Tail) Most common hydrophobic tails
consist of laureoyl (C12 H23O), myristeoyl (C14H27O), palmiteoyl
(C16H31O), or oleoyl (C18H33O). (Head) Most common phospho-
lipid head groups consist of choline (1), ethanolamine (2), serine (3),
or glycerol (4). (Steroids) Ergosterol (1) and cholesterol (2), two
frequently occurring membrane-stabilizing sterols in eukaryotes.
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which the equation of motion is calculated and derived,
neglecting some of the atomistic degrees of freedom. This does
not only significantly decrease the amount of interactions that
have to be calculated, but due to the larger size of each particle,
the potential energy surface is smoother, allowing for a larger
time step between calculations. In this category, we can
differentiate between approaches such as coarse-grained (CG)
MD, Brownian dynamics (BD), dissipative particle dynamics
(DPD), and molecular fragment dynamics (MFD). While the
use of BD is largely outdated as it relies on the introduction of
stochastic forces to replace solvent interactions, MFD and
DPD, which also use stochastic forces, can sometimes prove
useful for very large systems containing millions of atoms.24,25

This review mainly focuses on atomistic and CGMD
simulations (Figure 2).
3.1. Atomistic Scaling. Three atomistic scale force fields

will be covered in this review in more detail. Charmm,26

Gromos,27 and Amber28 force fields are used for the vast
majority of membrane MD simulations. Although polarizable
force fields are slowly gaining popularity, with examples
including the Charmm Drude force field29 and Atomic
Multipole Optimized Energetics for Biomolecular Applications
(AMOEBA) polarizable force fields,30 these are not yet readily
adopted for extensive MD simulations and will therefore not
be covered here.
In most cases, parametrization of force fields for use with

membrane proteins is focused on the optimization of a number
of macroscopic properties, such as membrane thickness,
curvature, and surface area per lipid (Figure 3). More advanced
parameters include the angular distribution of the lipid tail
vectors and the isothermal compressibility.
3.1.1. Amber. For several years, an Amber force field

designated for the simulation of lipids was not available. In
2012 however, the GAFFlipid force field was released with
reparametrized acyl chain carbons to allow for a more accurate
simulation of phospholipids.32 The force field was para-
metrized for DLPC, DMPC, DPPC, DOPC, POPC, and
POPE phospholipids. It was noticed that the isothermal
compressibility is highly sensitive to system size. Other

properties were replicated relatively well, but the order
parameters did not fully agree with experimental values.
Around the same time, Jam̈beck and Lyubartsev introduced

the Stockholm lipid parameters (Slipids).33 Originally, DLPC,
DMPC, and DPPC were extensively parametrized in order to
reproduce the volume per lipid, bilayer thickness, and order
parameters excellently. Later, the parameters were expanded to
include unsaturated acyl chains and phosphoethanolamine
head groups,34 sphingomyelin, phosphatidylglycerol,
phosphatidylserine, cholesterol,35 and polyunsaturated lipids.36

In 2014, the LIPID14 force field was introduced,37 with
improved replication of phosphatidylcholine phospholipids
and to be used without fixed surface tension. Later, the force
field was expanded to include parameters for cholesterol.38 The
most recent Amber force field parametrized for simulation of
lipids is the LIPID17 force field. It expands the LIPID14 force
field by including parameters for anionic head groups and
polyunsaturated acyl chains.39 Although the specialized Amber
force fields have improved parameters for lipids, they are
scarcely used in reality. This is mostly because these force
fields can only be used with the Amber MD package without
using convoluted workarounds. Therefore, when Amber force
fields are used in practice, it is most often one of the standard
Amber force fields combined with Berger parameters for lipids.

3.1.2. Charmm. The Charmm96 parameter set was the first
Charmm force field suitable for the simulation of lipids.
However, this parameter set has not seen a lot of adoption, and
comparisons have shown that it is inferior to the Charmm27
parameters for simulation of phospholipids.40 The parameters
of DPPC were revisited in a reparameterization of Charmm27,
allowing for the simulation of bilayer systems in an NPT
ensemble without the need of a fixed surface tension.41 This
Charmm36 lipid force field (C36 lipids) was later updated for
bilayer simulations involving cholesterol (C36c)42 and
improved parameters for the simulation of polyunsaturated
acyl chains (C36p).43

Finally, Charmm-GUI is a web-based service with a variety
of tools, including a membrane builder which facilitates the

Figure 2. Four scales for MD simulations, illustrated by a double layer membrane surrounded by water. (a) Full atomistic scale in which all atoms
are included (10,630 particles). (b) United-atom scale in which aliphatic carbons and their connected hydrogen atoms are treated as single beads
(7,080 particles). (c) Hybrid model in which the phospholipids are represented on a united-atom scale and the water as coarse-grained beads
(2,757 particles). (d) Coarse-grained representation of both solvent and phospholipids (947 particles).
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generation of parameters for phospholipids, building of the
bilayer, and insertion of proteins into the bilayer.44

3.1.3. Gromos. The initial Gromos force fields were not
suited for the simulation of long alkane chains. Various
reparameterizations ultimately gave birth to Gromos54A7/
54B7 including improvements to the phosphatidylcholine
parameters.45 Since these recent versions of the Gromos
force field utilize experimental solvation free energies for
parametrization and are computationally efficient due to the
united atom model, they have become a popular choice for
simulation of membrane proteins. Several parameter sets
compatible with the force field have been released over the

years, with parameters that were designed for simulations of
phospholipids. The Berger lipids parameter set is one of the
older parameter sets and is actually not exclusively compatible
with Gromos force fields, but was originally created for use
with Gromos43A1.46 While the original paper only discusses
DPPC, various other lipids have been parametrized over the
years. Berger lipid parameters are still a popular choice for
simulations of phospholipids; however, it is not evident to use
the Berger lipids in conjunction with more recent iterations of
force fields as these often have been reparametrized for cutoff
distances that vary from the original force field, resulting in
incompatibilities.47 The Berger parameters have been modified
by Aneźo and co-workers to be compatible with different
nonbonded interaction cut-offs.48

The Gromos53A6 force field also received its own
specialized phospholipid parameter sets: the Kukol parame-
ters49 and the parameters of Piggot, also known as the CKP
parameter set,50 that are derived from the Kukol parameters.
The Kukol parameters are designed for simulation of saturated
and unsaturated phosphatidylcholine and phosphatidylglycerol
phospholipids, mainly focusing on replicating experimental
area per lipid. Later on, Piggot adjusted the parameters to
improve the results for phosphatidylglycerol, phospho-
ethanolamine, and cardiolipin phospholipids.51 Although it is
generally known that the Berger parameters are not the best
choice for reproduction of experimental lipid properties, they
are still found in many recent papers in conjunction with older
versions of the Gromos force field or in conjunction with
Amber force fields.

3.1.4. Which Atomistic Force Field to Choose? A multitude
of appreciable force fields are available for simulations of
membrane proteins in lipid bilayers. As every force field is
consistent for at least some experimental property, it is not self-
explanatory or trivial to decide which force field is the correct
choice for a certain study. A number of papers compare the
different force fields and can act as a starting point to evaluate
the choice between force fields.52−54

As phosphatidylcholine phospholipids are the most preva-
lent type of phospholipids in mammals, a lot of experimental
data is available on these lipids and most lipid force fields have
focused on correctly representing these lipids in particular.
However, for simulations involving more complex bilayers or
bilayers containing more exotic phospholipids, the choice of
parameters is narrowed down a lot, and in many cases,
parametrization has to be done because no suitable force fields
are available. As mentioned before, this is a time-consuming
process and has been described in other papers.38,45 It is
recommended to use the newer versions of force fields, C36
and Gromos54A7 in particular, as these are currently the most
popular choices for membrane protein simulations. However,
in a recent comparative review, it was concluded that the
Gromos54A7 force field performed worse than the Charmm36,
Amber/Lipid14, and Amber/Slipids force fields when looking
at the transmembrane helix tilt angle and hydrophobic and
hydrophilic insertion behavior.53

3.2. Coarse-Grained Scaling. The development of
reliable coarse-grained MD models has been relatively new
for the simulation of biological systems, although the concept
originated in the 1970s. In CG simulations, molecules are
described by the interaction sites representing groups of atoms,
providing a reduced resolution description of a given system.
The CG representation of molecules was implemented to
significantly reduce the amount of calculations of interactions

Figure 3. Side- and top view of an example protein/membrane
complex to highlight some commonly used validation parameters.
The thickness of the membrane is calculated as the mean distance
between the phosphate groups of the outer and inner leaf of the
double layer. The membrane curvature can be expressed as two
principal curvature values C1 and C2, calculated from the
corresponding principal radii of curvature.31 Finally, the average
area per lipid is calculated by dividing the area of the XY plane of a
simulation box by the number of lipids in each leaflet.
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involved in each time step, thus substantially decreasing the
computational cost. This method makes it possible to simulate
systems up to a millisecond time scale, while retaining an
acceptable reliability. A computational speed-up of 2−3 orders
of magnitude can be achieved when compared to an atomistic
setup. While the reduced amount of interactions has a major
contribution toward this increase in speed, causing a 10- to
100-fold speed-up, particle-mesh Ewald summation or other
long-range electrostatics calculations are also irrelevant in
current CG force fields, leading to another 10-fold speed-up.55

Finally, the smoother energy surface that is achieved by using
larger particles also makes it possible to increase the
integration time step to 20 fs or in some cases even more,
without repercussions. In addition to the increased time step,
the effective time simulated is 3−8 times more than the time
step suggests. Generally, parameters are assigned to beads
consisting of 3−4 atoms when using CG models. While this
decreases the complexity of the system by reducing the
number of atoms and interactions, it also makes the process of
assigning parameters to molecules easier when compared to
parametrization of atomistic systems.
3.2.1. MARTINI. Among the coarse-grained force fields, the

MARTINI force field56 is the most popular one by far for
simulations of biological systems. Being one of the first
released CG force fields, it has seen various optimizations and
modifications for use in simulations with varying molecule
types.57,58 The popularity of MARTINI can be explained by
the fact that it is the only CG force field that is parametrized

for lipids as well as proteins, and the INSANE protocol
facilitates the creation of complex lipid systems.59 Recent
updates of the Charmm-GUI web service have seen the
implementation of the Martini Maker module, allowing for the
easy assembly of bilayer systems.44 A library of 82 lipids is
available and various flavors of the MARTINI force field are
supported.
The parametrization of the MARTINI force field is top-

down using the partition coefficient between octanol and
water. The advantage of such top-down parametrized force
fields is that parameters based on experimental values are more
general, which means the force field can be more reliably
applied to molecules which it has not been parametrized for,
while bottom-up force field parameters are usually only
accurate for specific molecule sets. The standard MARTINI
force field utilizes 18 different bead types. They are separated
into four categories: charged, polar, nonpolar, and apolar
beads. The charged and polar groups are further divided into
five categories based on the polarity, while the nonpolar and
apolar categories are divided into four categories based on the
presence or absence of hydrogen bond donating or accepting
groups. Nonbonded interactions between the beads are
defined as Lennard-Jones potentials that are based on the
interacting bead types. Electrostatic interactions are usually
represented by a method similar to a distance-dependent
screening. Bonded interactions are treated in a similar fashion
to atomistic force fields. The secondary structure of proteins is
not always retained very well. Approaches like the elastic

Figure 4. Illustration of the dummy bonds needed in the elastic network approach in order to retain the secondary structure of the protein using
the MARTINI CG force field (colored in red). Coarse-grained beads of the protein are colored yellow, and the water solvent is shown as blue
spheres. The double layer membrane is not shown for clarity.
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network approach (ElNeDyn) have been implemented to keep
proteins in the appropriate conformation during simulations
(Figure 4).60 Recently, the open beta of the MARTINI 3 force
field was released, containing topologies for over 120 lipids,
new beads types, reparameterization of several existing bead
types, and more.
One paper specifically aimed to test the reliability of the

CGMD approach.61 Ninety-one membrane proteins, for which
structural data was available, were submitted to a virtual
insertion in a DPPC lipid bilayer using the MARTINI force
field. The elastic network model was used to retain the protein
folding. From these 91 proteins, only five showed a Cα RMSD
greater than 0.5 nm. Various other validation publications have
been written, all showing how the MARTINI force field is able
to replicate experimental data within an acceptable standard
deviation.62,63

3.2.2. CGProt. A recent addition to the CG force fields is
CGProt, which has been reparametrized to support simulation
of membrane proteins.64 Until now, only limited amount of
validation and use cases for this force field is available, but the
force field seems to be promising as it is able to replicate
secondary protein structure without the need of using an
elastic network to pertain secondary structure. Currently, this
force field employs an implicit solvent model and the study of
membrane proteins was tested using a pre-equilibrated lipid
bilayer.
3.2.3. PRIMO. The PRIMO CG force field has recently been

extended for membrane protein simulations as well.65 It shows
good conformational agreement compared to crystal structures
of membrane proteins. By being able to replicate secondary
protein structure, it holds the same advantage over the
MARTINI force field that the CGProt force field does. This
removes the requirement of a constraining network and makes
it possible to sample conformational transitions.
3.3. Multiscale Modeling Approaches. Both atomistic

and coarse-grained models have their own advantages and
disadvantages. Researchers have attempted to combine both in
order to get the best of both worlds: a model of high resolution
to investigate microscopic interactions in a short time frame,
combined with a coarser model which makes it possible to look
at events on a larger scale within a larger time frame.
Combining both models is called multiscale modeling. A
further distinction is made between parallel and serial
multiscale modeling, which will both be covered in their
respective subsection. While this strategy shows a lot of
promise, it is a relatively recent innovation in the field and
there are still some issues that cannot be overcome easily,
which prevent widespread use of these approaches.
3.3.1. Parallel Multiscale Modeling. In the parallel

multiscale modeling approach, parts of the system are
described by a coarse-grained model, while other parts are
described by an atomistic model. The obvious advantage here
is that this makes it possible to study a large system on larger
time scale (μs), while at the same time making it possible to
zoom in on the atomistic scale properties of desired parts of
the system. Issues with this approach revolve around the
interactions between the CG and atomistic parts of the system.
Electrostatics are defined through a Coulomb potential in
atomistic force fields, but the CG water models are often
described by a Lennard-Jones potential; hence electrostatic
coupling is not possible. This results in an acceptable accuracy
for apolar particles, but for polar particles results can deviate
significantly from experimental data. Various methods

involving the mapping of one solvent molecule to one CG
bead and inclusion of scaling factors have been tested to
counteract this issue with relative success,66,67 however, at the
cost of losing most of the computational speed advantages of
the CG method.
The interactions of polar protein residues with the

surrounding water molecules may have important effects on
protein conformation. The absence of an accurate representa-
tion of the interactions between protein and solvation layer is
an issue that limits the static parallel multiscale method. One
could include an atomistic solvation layer for the protein, but
the water molecules would quickly diffuse into the CG solvent.
However, the adaptive resolution (AdResS) method has been
developed to address this problem.68 In AdResS simulations,
atoms get a resolution assigned which is automatically changed
as a function of the position of the molecule in the simulation
box. In general, the system is made up of a part in CG
resolution, a fully atomistic part, and a hybrid area separating
the two. In the hybrid layer, molecules can interchange
between CG and atomistic resolutions. Molecules in the hybrid
area are usually represented by a combination of AA and CG
parameters. While the AdResS method appears to be the most
promising among the parallel multiscale methods, no work has
been released adopting this technique for simulations of
membrane proteins. Simulations of simple systems have been
reported, but even with the current state-of-the-art methods,
simulation of bilayer-containing systems is still out of reach,
with the largest limiting factor being an unsatisfactory
representation of the phospholipids.

3.3.2. Serial Multiscale Modeling. The difficulties of parallel
multiscale MD simulations can be avoided when both
resolutions are applied sequentially. In serial multiscale
modeling, the system is first evaluated at a CG resolution
and subsequently converted to atomistic resolution and
evaluated again. This approach takes two established methods
and uses them separately, with the only catch being the
conversion of a CG system to an atomistic system. This
approach holds a lot of the advantages that the parallel
multiscaling method does, but interactions at the atomistic
resolution that are interesting to the user cannot be studied
during an equally long time frame, as the entire system is
converted into an atomistic resolution. The approach is often
used for validation or refinement of CGMD simulations.

3.4. Conversion between the Atomistic and Coarse-
Grained Scales. For the purpose of setting up a CG-
represented system from crystal structures or from atomistic
scale simulations, methods are necessary to convert a system
from an atomistic representation to a CG representation.
Likewise, methods are necessary to convert a system from a
CG representation to an atomistic representation for perform-
ing serial multiscale modeling simulations.

3.4.1. From Atomic Scale to Coarse-Grained. The
conversion of a protein from an atomistic model to a coarse-
grained model can be done with various scripts. Methods like
force matching were used to derive the potential of mean force
(PMF) between beads from an atomistic model.69 Similar
methods, relying on calculations to derive parameters, are
called “bottom-up” methods. While automated procedures to
derive parameters are widely available for all-atom and united-
atom modeling, such protocols are scarce for CG systems. Four
different publicly available software packages have been
reported using bottom-up methods. “VOTCA”,70 “IBIsCO”,71

“MagiC”,72 and, most recently, “PyCGTOOL”.73 These
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software packages derive a CG model based on an atomistic
description of the system via inverse Monte Carlo or iterative
Boltzmann inversion. “Top-down” approaches attempt to
replicate experimental data by fine-tuning the parameter set.
These can also be effective to obtain a CG model but are more
laborious.74 With these approaches, the CG model is tuned to
the experimental properties of the molecule in a trial-and-error
procedure.
3.4.2. From Coarse-Grained to Atomic Scale. Several

methodologies have been created for the conversion of a CG
system to an atomistic one that retains the correct
conformation, and the most relevant ones will be discussed
here. One approach is the use of molecular fragment libraries
to retrieve stereochemical information for nonprotein and
nonwater parts of the system.75 Conversion happens by
aligning the atomistic fragments to the CG lipids, followed by
an energy minimization. A different approach for the back-
mapping problem is the use of a three-step algorithm.76 First,
atoms are spatially positioned near their coarse-grained
counterparts. A simulated annealing procedure is then used,
constraining the atoms to the CG representation using
harmonic restraints. Finally, the restraints are gradually
removed and the system is allowed to relax. As the algorithm
does not rely on the use of fragment databases, it is easily
transferable between force fields and molecule types.
3.5. Use Cases of Each Force Field. When examining

specific use cases, it becomes clear that various approaches are
still commonly used and that there is no clear use-case per
force field. While a clear preference can be seen toward use of
the Charmm20,77 and Gromos78,79 suites of force fields, the less
used Amber suite is still commonly applied.80,81 In some
papers, the availability of the different approaches is used to
the authors’ advantage. For example, in a paper of Aponte-
Santamariá and co-workers,82 the correlation between temper-
ature and protein conformation of a yeast aquaporin is
investigated in separate simulations with suites of the Amber,
Charmm, and OPLS-AA force fields, aiming for a form of
consensus between the methods. The MARTINI force field
and other CG force fields can be applied in many cases. They
are generally avoided whenever possible, but as soon as the
system size grows too big, the MARTINI force field is used in
part of or the entire simulations.83,84

Today, the use of MD in membrane protein studies can
generally be divided into four categories: membrane−protein
interactions, protein sorting in the lipid bilayer, protein-
induced membrane remodeling, and membrane protein
function. Serial multiscale approaches are very popular for
investigating membrane−protein interactions. Most often, the
MARTINI force field is combined with a version of the
Gromos force field. As many dynamic processes in the lipid
bilayer happen on the microsecond scale, CG simulations are
used to simulate these events, followed by atomistic
simulations which allow investigation of key interactions
between protein and lipids.85−87 When investigating protein
sorting in bilayers, the choice toward CG methods is almost
unanimous. Sorting events occur on the microsecond scale and
the systems used are often large, which does not really leave
any other options with the currently available resources.88,89

When regarding membrane remodeling, the systems are even
larger. Here, CG methods are commonly used, but some
researchers also use mesoscale dynamics in combination with
atomistic simulations.90 Finally, function is the property of
membrane proteins that is most frequently tackled with MD

simulations. As these experiments put the emphasis on the
protein, reproduction of lipid properties is valued less, and
accuracy of the protein force field is valued more. For this
reason, Charmm force fields are most common in these
experiments,91−94 although the other common force fields such
as Amber also see a lot of use.94 Moreover, since the release of
Gromos54A7, the use of the Gromos suite has increased
significantly.95,96

To summarize: when working in large systems containing
many lipids, coarse-grained and united atom force fields are
most commonly used. When working in smaller systems,
where the focus is put on dynamics within the protein, a
preference can be seen toward the Charmm suite of force
fields. Nevertheless, force field choice often depends on the
research group. Groups that have been working with a certain
force field for years will often continue using this same force
field due to convenience.

4. FUTURE PROSPECTIVE
As it stands today, MD simulations still have a lot of
limitations. With the computational power we have at our
disposal, simulations on a time scale of milliseconds and up are
almost impossible for large systems. Highly specialized
computers like Anton are a step in the right direction but
can still be improved upon. Efficiency of integration steps in
molecular dynamics software can also be improved upon. The
advent of coarse-grained MD methods has made time scales
less of an issue, but when attempting to look at microscopic
interactions on a large time scale, there are still no clear-cut
available methods. A lot of novel methods like parallel
multiscale modeling and polarizable coarse-grained force fields
are being developed but are currently not mature enough for
simulation of large bilayer systems. In the future, time scale
issues could be overcome by the development of sophisticated
parallel multiscale methods, more reliable implicit solvent
models, and the development of million-core specialized
computing clusters resulting in a drastic increase in computa-
tional power. The effective size of the system is another hurdle.
Ideally, molecular modeling would be possible on entire cells.
This, however, still lies far out of reach. On one end, the
experimental data that is necessary for construction of an MD
system and for assignment of reasonable parameters is not yet
available. On the other hand, simulating such a large system is
simply not feasible with the current techniques. The gap
toward full cell simulations could also be closed by an increase
in computational power and, through the use of sampling
tricks, decreasing the amount of necessary computations. In a
full cell, a lot of degrees of freedom are unnecessary, and
removing these irrelevant degrees of freedom can significantly
speed up simulations.
When we focus more specifically on the simulation of bilayer

systems, other issues arise. Curvature and rigidity of the lipid
bilayer are still big issues in many force fields, and this can
possibly be attributed to the cytoskeleton. We know that the
cytoskeleton of the cell helps to maintain its shape and likely
has a stabilizing effect on the lipid bilayer. As long as we do not
have a clear idea of how the interactions between the
cytoskeleton and the bilayer affect the bilayer properties, it is
difficult to account for this shortcoming. A second limitation
concerning bilayer simulations is the approximations that are
made in force fields. As more experimental data becomes
available for phospholipids and other membrane lipids, it will
be possible to optimize force field parameters in a more
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thorough manner. Toward the future, it should also become a
point of discussion which properties are suitable for validation.
Right now, area per lipid is largely used47 but might in fact not
be the best property to rely on for validation. Other properties
like order parameter, lateral diffusion, and membrane thickness
should also be considered and evaluated.50,51 The lack of
knowledge on lipid behavior and lipid properties significantly
holds back the development of such parameters, with
experimental data being inconsistent for many properties of
some phospholipids and completely absent for most
phospholipids.
Finally, a consensus on simulation parameters should also be

achieved in the future. Different papers discuss the advantages
and disadvantages of methods, but ultimately it is unclear what
method would be optimal for a specific system. Various
discussions like the use of isotropic or semi-isotropic pressure
coupling,97 periodic boundary conditions and long-range
interaction cut-offs,98 system hydration,99 and salt concen-
tration100 make it clear that we still have a long way to go
toward a uniform simulation method that is suitable for general
system conditions and for investigating a broader range of
properties.
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