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Abstract 

Spectrophores are novel descriptors that are calculated from the three-dimensional atomic properties of molecules. 
In our current implementation, the atomic properties that were used to calculate spectrophores include atomic 
partial charges, atomic lipophilicity indices, atomic shape deviations and atomic softness properties. This approach 
can easily be widened to also include additional atomic properties. Our novel methodology finds its roots in the 
experimental affinity fingerprinting technology developed in the 1990’s by Terrapin Technologies. Here we have trans-
lated it into a purely virtual approach using artificial affinity cages and a simplified metric to calculate the interaction 
between these cages and the atomic properties. A typical spectrophore consists of a vector of 48 real numbers. This 
makes it highly suitable for the calculation of a wide range of similarity measures for use in virtual screening and for 
the investigation of quantitative structure–activity relationships in combination with advanced statistical approaches 
such as self-organizing maps, support vector machines and neural networks. In our present report we demonstrate 
the applicability of our novel methodology for scaffold hopping as well as virtual screening.
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Introduction
Computational drug design has played a major role in 
the discovery of molecular therapeutics for more than 
three decades. This domain can be broadly classified 
into protein structure-based and ligand-based methods. 
Protein structure-based methods rely on the availabil-
ity of structural information of both protein target and 
ligands, and includes technologies such as computational 

fragment-based drug design [1] and molecular dock-
ing [2, 3]. Ligand-based methods use only informa-
tion obtained from the ligands for predicting activity, 
dependent on their similarity or dissimilarity to previ-
ously known active ligands. Widely used ligand-based 
methods include pharmacophore searching [4, 5], bit-
wise fingerprint-based similarity searches [6–9] and the 
development of quantitative structure–activity/property 
relationships involving a variety of different molecular 
descriptors [10–13]. Additionally, important cheminfor-
matics approaches such as the establishment and main-
tenance of compound databases [14–17], compound 
clustering [18, 19] and maximum common substruc-
ture calculations [20, 21] are now firmly integrated into 
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the workflow of many pharmaceutical drug discovery 
processes.

Ligand-based virtual screening approaches all rely 
on the concept that structurally similar molecules have 
similar biological activities [22]. Molecular fingerprints 
are bitwise representations of molecular structure and 
properties and examples include hashed connectiv-
ity pathways [23], dictionary-based [24], and layered 
atom fingerprints [25, 26]. Another example are the 
3D-MoRSE descriptors [27]. These methods are also 
called two-dimensional (2D) similarity methods since 
these do not rely on the underlying three-dimensional 
(3D) structure of the molecules.

It has been shown that in a significant number of cases 
ligand-based virtual screening outperforms protein 
structure-based virtual screening [28], although the lat-
ter performs better in scenarios where novel scaffolds 
need to be identified [29]. 3D similarity virtual screening 
methods make use of the three-dimensional structure of 
the reference compound, as a query to search for com-
pounds that have similar spatial atomic arrangements. 
These methods are not dependent upon the underly-
ing molecular topology of the query compounds and 
are therefore also useful for scaffold hopping. Examples 
of such algorithms include shape-matching algorithms 
and shape-based fingerprints [30, 31], molecular field 
descriptors [32, 33], pharmacophore fingerprints [34–36] 
and pharmacophore-based screening [37–39]. A number 
of recent reviews on the use of descriptors and classifica-
tion methods are available [40–43].

In this study, a novel shape-based descriptor is 
described which is termed a ‘spectrophore’, referring to 
the fact that this descriptor is composed of a one-dimen-
sional ‘spectrum’ of n real numbers, with each of these 
numbers representing the interaction between a given 
molecular property and a certain artificial environment 
(hence resembling a type of ‘pharmacophore’). Because 
spectrophores are shape-based, these descriptors are 
not directly dependent on the actual molecular topology 
but rather on the molecular field that is generated by the 
underlying topology, hence craving it use as a scaffold-
hopping tool in combination with automated molecular 
design approaches. In addition, since the spectrophores 
are composed of a set of real numbers and being inde-
pendent on the underlying molecular orientation, these 
descriptors can be used as input to automated machine 
learning approaches for the generation of advanced 
QSAR models. The spectrophore approach has been 
based on the affinity fingerprinting technology, which 
was originally described in the 90’s by Terrapin Technol-
ogies, Inc. [44]. In this approach, an affinity fingerprint 
is the pattern of the in vitro binding potency of a single 
compound to a reference panel of eight diverse proteins. 

Using a database of such affinity fingerprints, the authors 
were able to predict the binding potency of a novel com-
pound for a specific protein target using a multivariate 
linear regression model, derived from the affinity finger-
prints of a small set of training compounds. An analo-
gous fingerprinting system is used in the spectrophore 
technology presented here, but in which the diverse set 
of reference proteins of the original affinity fingerprinting 
technology has been replaced by a set of virtual affinity 
cages. In addition, the in vitro measured binding poten-
cies have also been replaced by the calculated interaction 
energies between a number of atomic properties and the 
surrounding cage points. We report the applicability of 
this approach for virtual screening and compound clus-
tering. The influence of the conformational flexibility on 
the generated spectrophores is also discussed.

Method
Artificial cages surrounding the molecule
Spectrophores are generated by calculating the inter-
action energies between the molecule and a set of pre-
defined artificial cages that surround the molecular 
conformation. Each cage consists of 12 points and each 
point is assigned a value of + 1 or − 1, with the additional 
constraint that the sum of the values on all points on the 
cage should be 0 (hence each cage consists of six points 
with value + 1 and six points with value − 1) (Fig. 1).

Within the constraint that the sum of all values on the 
cage must be zero, it is possible to construct either 12 or 
18 unique cages, depending on whether the + 1 and − 1 
values are distributed in either a symmetrical or asym-
metrical manner along the cage. These different cages are 
summarized in Table 1.

Fig. 1 Schematic representation of the artificial cage with the 12 
points labeled. Each point is assigned a value of + 1 or − 1, with 
the constraint that the sum of all values must be zero. A molecule 
enclosed by the cage is also shown
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Each molecule (or more specific: each conformation) 
is inserted into each of these cages with the molecu-
lar center of geometry corresponding to the center of 
the cage. The initial orientation of the molecule is taken 
from the input geometry provided by the user; however 
this parameter is not important as the molecule is sub-
sequently rotated along all its axes within the surround-
ing cage (see below). In our current implementation we 
opted to use a rectangular cage with the cell dimensions 
adjusted in such a manner that the minimum distance 
between the enclosed molecule and each of the cell edges 
corresponds to a constant value which is in the same 

range of a typical ligand-receptor non-bonded contact, 
for example around 3 Å, and which can be specified at 
runtime (corresponds to the resolution of the spec-
trophore; see below). This constant distance between 
molecule and cage is established by altering the cage 
dimensions on each new orientation of the enclosed 
molecule.

Atomic properties
The generation of a spectrophore requires the calcula-
tion of a number of atomic properties of which the inter-
action energy with the cage point values is obtained. 

Table 1 Distribution of + 1 and − 1 values on each of the cages

Grid point numbering refers to the numbering shown in Fig. 1. There are 12 cages with a center of symmetry (hence non-stereospecific cages), and 18 cages without a 
center of symmetry (stereospecific cages). ‘+’ represents a value of + 1, and ‘−’ represents a value of − 1

Non-stereospecific cages Grid points

1 2 3 4 5 6 7 8 9 10 11 12

Cage 1: + + – – – + + – – – + +
Cage 2: + + – – + – – + – – + +
Cage 3: + + – – + – – + – – + +
Cage 4: + + + – – – – – + + – +
Cage 5: + + + – – + – + – – + –

Cage 6: + + + – + – + – – – + –

Cage 7: + + + – + – + – + – – –

Cage 8: + + + + – – – – + – + –

Cage 9: + + + + – – – – + + – –

Cage 10: + + + + + – – + – – – –

Cage 11: + + + + + + – – – – – –

Cage 12: + + + – – + – – – + – +
Stereospecific cages Grid points

1 2 3 4 5 6 7 8 9 10 11 12

Cage 1: + + – – + – + – + – – +
Cage 2: + + + – – – – – + + + –

Cage 3: + + + – – + – – – – + +
Cage 4: + + + – + – – – – + – +
Cage 5: + + + – + – – – – – + +
Cage 6: + + + – + – – – + – + –

Cage 7: + + + – + – – – + – – +
Cage 8: + + + – + + – – – – – +
Cage 9: + + + – + + – – + – – –

Cage 10: + + + – + – – + – + – –

Cage 11: + + + – + – – + – – + –

Cage 12: + + + – + – – + – – – +
Cage 13: + + + – + + – + – – – –

Cage 14: + + + – + + – – – – + –

Cage 15: + + + – + – + – – + – –

Cage 16: + + + – + + + – – – – –

Cage 17: + + + + + – – – + – – –

Cage 18: + + + + + – – – – + – –
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In our current implementation, four atomic proper-
ties were generated, which include the atomic partial 
charges, atomic lipophilicities, atomic shape deviations 
and atomic electrophilicities. These properties were 
selected based on the fact that no or little correlation 
exists between each of these, as shown in Fig. 2 in which 
the atomic properties calculated from a subset of 10,000 
compounds randomly selected from the DUD-E dataset 
[45, 46] are plotted against each other.

Atomic shape deviations are generated by calculat-
ing, for each atom, the atom’s deviation from the aver-
age molecular radius. Atomic partial charges and atomic 
electrophilicity properties are calculated using the elec-
tronegativity equalization method, as described by Bult-
inck and coworkers [47, 48]. Atomic lipophilicities are 
assigned using a rule-based approach, according to the 
particular atom type. Parameters used to calculate lipo-
philicity, electronegativity and partial charges are sum-
marized in Table 2.

Fig. 2 Correlation plots between the four atomic properties that were used to calculate spectrophores. Correlation coefficients are also given for 
each property pair. Atomic properties were calculated from a randomly selected subset of 10,000 compounds from the DUD-E database [45, 46]. 
The lipophilicities are discrete since there only 12 different atomic lipophilic properties (see Table 2 below)

Table 2 Parameters used to calculate the atomic par-
tial charges [47, 48], atomic electronegativities [47, 48] 
and atomic lipophilicities

Atom χ η Atomic lipophilicity

H (polar) + 0.206 + 0.660 − 0.374

H (connected to C or H) + 0.206 + 0.660 − 0.018

Li, B, Na, Mg, Si, P, K, Ca, Fe, 
Cu, Zn

+ 0.362 + 0.330 − 0.175

C + 0.362 + 0.330 + 0.271

N + 0.493 + 0.345 − 0.137

O + 0.730 + 0.544 − 0.321

F + 0.721 + 0.727 + 0.217

S + 0.620 + 0.206 + 0.385

Cl + 0.362 + 0.330 + 0.632

Br + 0.701 + 0.546 + 0.815

I + 0.681 + 0.307 + 0.198

Any other element + 0.206 + 0.660 − 0.175
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Interaction energies
For a molecular conformation with j atoms and p atomic 
properties (in the current implementation p = 4), the total 
interaction value V(c, p) between the atomic contribution 
values A(j, p) of property p and the cage values P(c, i) for 
a given cage c with i cage points, is calculated according 
a standard interaction energy equation as given in Eq. 1:

with rij being the Euclidean distance between cage point 
i and atom j. The arbitrary factor of − 100 in the equa-
tion above is used to scale the calculated interaction val-
ues to a number of order ~ 1, with attractive interaction 
values expressed as positive numbers and repulsive val-
ues as negative numbers. This total interaction energy 
V(c, p) for a given property p and cage c is maximized by 
rotating the molecular orientation along the three angu-
lar dimensions and calculating at each rotational orienta-
tion the corresponding V(c, p) value. The final interaction 
energy V(c, p) for a given cage c and property p corre-
sponds to the maximal interaction energy obtained this 
way. The entire process is repeated for each cage and for 
each atomic property, hence a typical spectrophore vec-
tor consists of c times p values, with c being the number 
of artificial cages that are used and p the number of dif-
ferent atomic properties. In the current implementa-
tion, default values for c and p are 12 and 4, respectively, 
meaning that 12 different cages and 4 different atomic 
properties are used, thereby generating spectrophores of 
48 values per molecule (Fig. 3). The 48 values are organ-
ized into four sets of 12 values each:

(1)V (c, p) = −100
∑

i

∑

j

A(j, p)P(c, i)

rij

  • Values 01–12: optimal interaction energies calculated 
from the atomic partial charges;

  • Values 13–24: optimal interaction energies calculated 
from the atomic lipophilicities;

  • Values 25–36: optimal interaction energies calculated 
from the atomic shape deviations;

  • Values 37–48: optimal interaction energies calculated 
from the atomic electrophilicities.

It should be noted that other spectrophore sizes 
are also possible. When the asymmetrical cages are 
selected (Table 1) the resulting spectrophore consists of 
18 × 4 = 72 values. In case both the asymmetric and sym-
metric cages are selected, the resulting spectrophore will 
consist of 30 × 4 = 120 values. However, by default the 
non-stereospecific set of 12 cages are used, resulting in a 
spectrophore of 48 values.

Adjustable parameters
Accuracy
As mentioned previously, the total interaction energy 
between a given cage and molecule for a given property 
is optimized by sampling the molecular orientation in 
angular steps of a given magnitude. Larger angular step 
sizes lead to faster computing times, but at the risk of 
missing the global interaction energy maximum, leading 
to a dependency of the spectrophore values on the actual 
starting orientation. Smaller angular step sizes sample 
the orientational space more thoroughly, but at a much 
higher computational cost. In our current implementa-
tion, accuracy is restricted to angular step sizes of 1°, 2°, 
5°, 10°, 15°, 20°, 30°, 36°, 45° or 60° along all three axes. 
The user can specify this step size and therefore influence 
the required accuracy of the method.

Resolution
Spectrophores capture information about the property 
fields surrounding the molecule. The closer the sur-
rounding cage is wrapped around the molecule the more 
atomic details and variations are captured in the resulting 
spectrophore values. The default distance between the 
molecule and cage is 3 Å, as this resembles a non-bonded 
average distance between the receptor and ligand. Com-
putational time is not influenced by the applied resolu-
tion setting. In the current implementation, resolution 
can be specified by any real number that is larger than 0.

Stereospecificity
As previously mentioned, there are 12 cages that are sym-
metrical and 18 cages with an asymmetrical distribution 
of points. These latter cages are therefore sensitive to the 
enantiomeric configuration of the molecule within the 
cage. For example, the generated spectrophores of both 

Fig. 3 Dissection of the spectrophore vector using a hypothetical 
example. Each value represents the maximal interaction energy value 
V(c, p) between property p and cage c as calculated according Eq. 1, 
optimized by rotating the molecule in the box and keeping the larg-
est value. Only shown are the spectrophore values calculated with 
cages 1, 2, 11 and 12
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enantiomers of a chiral molecule will be of opposite sign 
to each other. In most instances, the symmetric cages will 
suffice for normal usage of the spectrophore technology. 
In the current implementation, there are three stere-
ospecificity settings: ‘none’ for no stereoselectivity (hence 
using the 12 symmetric cages), ‘unique’ for using only the 
18 asymmetric cages, and ‘all’ for using the 12 symmetric 
and 18 asymmetric cages.

Normalization
In some circumstances it may be desirable to focus 
on the relative differences in the spectrophore val-
ues rather than on the absolute numbers, and for this 
reason normalization of the calculated values may be 
needed. Normalization may be important when com-
paring spectrophores of charged and neutral molecules, 
since the presence of a formal charge in the molecule 
will lead to a shift in the spectrophore values of the 
atomic charge and electrophilic properties: the lipo-
philicity and shape deviation spectrophore points are 
not influenced by the presence or absence of a formal 
charge. Normalization is performed on a ‘per-property’ 
basis, meaning that normalization is only performed on 
the data points belonging to the same property and not 
across all the data points. In our current implementa-
tion, there were four normalization settings: ‘none’ for 
no normalization, ‘mean’ for normalization by zero 
mean, ‘std’ for normalization by unit standard devia-
tion, and ‘all’ for normalization by zero mean and unit 
standard deviation.

Results and discussion
Conformational flexibility dependency
The DUD-E dataset [45, 46] was used as a source for 
the selection of 1000 random compounds. Conforma-
tions were generated using RDKit [49]. For each mole-
cule, the number of conformations generated was equal 
to 1.5 times the number of atoms. Each conformation 
was converted into a spectrophore using the default 
values (accuracy: 20°, resolution: 3  Å, stereospecific-
ity: ‘none’). The standard deviation of the spectrophore 
values from different molecules (using only the first 
conformation of each molecule to calculate the spec-
trophore from) was compared to the standard devia-
tion of the spectrophore values calculated from the 
different molecular conformations. The results are 
summarized in Fig.  4, and demonstrate that the vari-
ation in the spectrophore values, resulting from the 
conformational flexibility, is less than the variability 
resulting from molecular differences: hence spectro-
phores from different molecules show more variation 
than spectrophores from different conformations of the 
same molecule.

Influence of the resolution and accuracy settings
The resolution of the spectrophore calculations is con-
trolled by the distance between the central molecule and 
its surrounding cage. In Fig.  5 (top), the dependency of 
the spectrophore values on the resolution is shown. With 
increasing values in resolution setting, the absolute val-
ues of the calculated spectrophores become smaller, 

Fig. 4 Comparison of the variations in spectrophore values result-
ing from molecular flexibility or molecular variability. The top figure 
shows the average of the normalized spectrophore values calcu-
lated across the different conformations of each molecule (yellow) 
or across molecules (blue). The colored areas indicate the average 
value ± one standard deviation. The bottom figure shows the same, 
but on the corresponding normalized spectrophore values. Focusing 
on the normalized values, the average standard deviation of the 
spectrophore values across conformations was 0.37, while the cor-
responding value across molecules was 0.57
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which is a consequence of the larger distance between the 
molecule and its surrounding cage. Changes in resolution 
often do not modify the overall shape of the resulting 
spectrophores, but minor local changes in the values are 
nonetheless observable (for example in the 1–12 region 
of the spectrophore; see Fig. 5). It is therefore important 
to use an identical resolution setting when comparing 

spectrophores of different molecules. In our current 
spectrophore implementation, a distance of 3 Å was used 
as the default resolution, since this distance reflects the 
typical non-bonded distance between ligand and its sur-
rounding receptor.

Accuracy of the spectrophore calculations is specified 
by the angular step size that is used to rotate the molecule 
within its surrounding cage. Smaller step sizes can lead 
to significantly longer calculation times, while larger step 
sizes are much faster in sampling the rotational space but 
at the risk of missing the global interaction energy mini-
mum. As shown in Fig. 5 (bottom), the best compromise 
between accuracy and computing time is obtained with 
an angular step size of 20°, as when using this step size 
there are no significant differences with the correspond-
ing spectrophore values obtained using smaller step 
sizes. In contrast, accuracy settings of 36° and 60° lead to 
significant deviations in the calculated values.

Application note 1: precision and recall calculated on the 
DUD-E dataset
The DUD-E dataset [45, 46] was used to evaluate the 
potential use of spectrophores in the field of virtual 
screening. The original DUD-E dataset contains a total 
of 22,886 active compounds for 102 different pharmaco-
logical targets, with each active compound ‘diluted’ by an 
average of 50 decoy structures. For each of the 102 phar-
macological targets, a reference compound was selected 
and the ranked Euclidean distances between the spec-
trophores of these reference compounds and all other 
DUD-E spectrophores were used to calculate the area 
under the curve (AUC) from the corresponding receiver 
operating characteristic (ROC) curves. Spectrophores 
were calculated with varying normalization parameters 
and stereospecificity settings, however with a constant 
default resolution of 3 Å and a constant angular step 
size of 20°. Conformations were those as provided in the 
DUD-E dataset. The results are summarized in Table 3.

The best median AUC value (0.63 ± 0.13) was obtained 
when normalization was calculated over the average 
(normalization ‘mean’) and with stereo option ‘none’ 
(hence using the 12 non-stereospecific cages). This AUC 
value came close to the AUC of 0.66 as calculated using 
Morgan fingerprints [50, 51] in combination with the 
Tanimoto similarity index (data not shown) [52]. On the 
other hand, the worst AUC median (0.55 ± 0.19) was 
found without normalization (normalization ‘none’) and 
when only the 18 stereospecific probes (stereospecificity 
‘unique’) were used.

Spectrophores are vectors of real numbers and can 
therefore be used in machine learning applications to 
classify active from inactive compounds. The example 
shown in Fig. 6 applies four machine learning approaches 

Fig. 5 The dependency of the spectrophore values on the resolu-
tion (top) and accuracy settings (bottom). A single conformation of 
domperidone was used to calculate the spectrophores. All spectro-
phores were calculated with stereochemistry and normalization flags 
both set to ‘none’. To generate the top figure, accuracy was set to 
the default value of 20°, and for the generation of the bottom figure 
the resolution was set to 3 Å. Plotted along the x-axes are the 48 
individual spectrophore points, and plotted along the y-axes is the 
logarithm of the calculated spectrophore values
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[(a) stochastic gradient descent (SGD) linear regres-
sion, (b) logistic regression and support vector machine 
(SVM) with both a linear (c) and a polynomial (d) ker-
nel], as implemented within the scikit-learn package [53], 
to classify active from inactive compounds within 102 
targets of the original DUD-E dataset [45, 46]. For each 
molecule, spectrophores were calculated from the single 
molecular conformation as provided in the DUD-E set, 
each of them differing in the applied normalization and 
treatment of stereospecificity. Each dataset was cross-
validated ten-fold using 10 stratified subsets, and the best 
models were selected based on maximum precision and 
recall. At the end, averages of the 102 recall and precision 
values were calculated and these averages are plotted in 
Fig. 6.

In general, logistic regression and SVM with a poly-
nomial kernel gave the best results. The best values of 
precision were found using logistic regression with nor-
malization and stereospecificity both set to ‘none’ (pre-
cision = 0.94 and recall = 0.71), or with normalization set 
to ‘std’ and stereospecificity set to ‘all’ (precision = 0.96 
and recall = 0.64). The best result for recall was obtained 
using the SVM polynomial kernel with normalization 
set to ‘none’ and stereospecificity set to ‘unique’ (preci-
sion = 0.79 and recall = 0.94) (Fig. 6).

The obtained metrics are comparable to results 
obtained with other approaches based on 2D-fingerprints 
or standard shape-based methods, indicating that the 
spectrophore technology can also be used as a virtual 
screening platform. However, direct comparison between 
the different approaches, and in particular questions 
aimed at answering which method is the’best’, are in our 
opinion not useful since each method or approach has its 
own application domain and one method may be more 
applicable or desired compared depending on the ques-
tion to be answered.

Application note 2: scaffold hopping
Spectrophores are calculated as interaction energies between 
a set of atomic properties and a set of artificial receptors, in 
casu a set of cages represented by 12 cage points each with a 
+ 1 or − 1 value. With respect to this, since only the atomic 
properties themselves, and not the actual atom types, con-
tribute to the final spectrophore values, spectrophores can 
be useful for scaffold hopping in which one wants to iden-
tify fragments with similar interaction properties but with 
different atomic and topological environments. In order to 
demonstrate the applicability of spectrophores to scaffold 
hopping, all five- and six-membered disubstituted aromatic 
rings were extracted from the DUD-E dataset [45, 46] and 
converted into their corresponding spectrophores (using 
full normalization and with only the 12 non-stereospecific 
cages) after replacing each of the two sidechains by a methyl 
group and generation of a single conformer for each ring. 
Subsequent clustering of the calculated spectrophores using 
the affinity propagation implementation of scikit-learn [53] 
classified the 72 different ring systems into seven different 
clusters, populated with 4–17 members each (Table  4; for 
a list of all ring systems and their corresponding cluster, see 
Additional file 1: S1). For the majority of clusters, a consen-
sus chemical scaffold could be identified; these scaffolds are 
shown in Fig. 7. As demonstrated in Table 4 and Fig. 7, it can 
be seen that ring types 0, 1, 3, 5 and 6 are very well separated 
from the other types. Ring types 0, 3 and 5 are all 1,3-disub-
stituted five-membered ring systems, with a hydrogen bond 
acceptor functionality in the 4- and 2-position for types 0 
and 5, respectively. Ring types 1 and 6 are 1,2-disubstituted 
five-membered rings, the difference between these two is 
the presence of a hydrogen bond acceptor pharmacophore 
at position 3 and 4 for type 1 and 6, respectively. Clusters 2 
and 4 are less well clearly defined, with cluster type 2 being 
a mixture of rings of type 0, 1, 2, together with a significant 
fraction of rings which cannot be not classified into these 
seven ring clusters. Finally, cluster type 4 is merely composed 
of 1,2-disubstituted six-membered rings with a significant 
contamination of rings which can be classified as ring type 
1 (Table 4). 

Again, as in the case of case study 1, we do not want 
make any statements whether the spectrophore approach 
in scaffold hopping is better than any other method; we 
have only included this case in order to demonstrate the 
applicability of the technology in scaffold hopping and 
the use of it in compound clustering.

Application note 3: combining machine learning 
and spectrophores for the identification of novel inhibitors 
from compound databases
In order to demonstrate the applicability of spectro-
phores in the domain of virtual screening, mathemati-
cal models were generated from the spectrophores, 

Table 3 Median AUC values with standard deviations cal-
culated from the DUD-E dataset

Spectrophores were calculated with varying parameters. Firstly, spectrophore 
normalization was varied from no normalization at all (‘none’), normalization 
along the average (‘mean’) or standard deviation (‘std’), or normalization by 
both average and standard deviation (‘all’). Secondly, stereospecificity was either 
neglected using only the 12 non-stereospecific cages in the calculation of the 
spectrophores (stereospecificity ‘none’), included using the 18 stereospecific 
cages (stereospecificity ‘unique’), or using both the 12 non-stereospecific and 18 
stereospecific cages (stereospecificity ‘all’)

Normalization: Stereospecificity

‘None’ ‘Unique’ ‘All’

‘None’ 0.58 ± 0.18 0.55 ± 0.19 0.55 ± 0.19

‘Mean’ 0.63 ± 0.13 0.61 ± 0.13 0.62 ± 0.13

‘Std’ 0.56 ± 0.14 0.57 ± 0.12 0.57 ± 0.13

‘All’ 0.61 ± 0.14 0.62 ± 0.14 0.62 ± 0.14
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and these models were subsequently used to identify 
compounds predicted to be inhibitory active against a 
particular subset of therapeutic targets. Following this 
virtual screening step, a number of these compounds 
were actually acquired and their predicted inhibitory 
activity was subsequently biochemically validated.

Training set
The training set was constructed from the DUD-E data-
set [45, 46]. For each compound in the DUD-E set, ten 

conformations were generated using RDKit [49] and 
each conformation was converted into a spectrophore 
with default parameters (accuracy: 20°, resolution: 3  Å, 
stereospecificity: ‘none’). All ten spectrophores of each 
molecule were then merged into a single spectrophore 
by calculating the element-wise maximum of all the ten 
spectrophores. The training set hence consisted of 22,802 
spectrophores corresponding to the ‘active’ compounds, 
and 1180,480 spectrophores corresponding to the ‘inac-
tive’ compounds (the decoy set in DUD-E).

Fig. 6 Average recall and precision parameters calculated for a number of machine learning classification methods applied to the DUD-E data-
sets. Recall is defined as the ratio of the retrieved true active compounds to all active compounds in the dataset, and precision is the ratio of the 
retrieved true active compounds to all predicted active compounds in the dataset. Normalization parameters are indicated by the marker shapes 
(diamond: ‘none’; square: ‘mean’; triangle-up: ‘std’; circle: ‘all’), and treatment of stereospecificity is indicated by the marker colors (blue: ‘none’; red: 
‘unique’, green: ‘all’)



Page 10 of 24Gladysz et al. J Cheminform  (2018) 10:9 

Building the classifiers
In the first phase of this virtual screening experiment, a 
binary classification machine learning model was trained 
and selected based on maximal ‘precision’ to classify 
‘active’ spectrophores from ‘inactive’ ones (in order to 
limit the number of false positives, ‘precision’ was cho-
sen as a model evaluation parameter). All models were 
generated using the scikit-learn package in Python [53]. 
The best model comprised a majority soft voting model 
with a random forest and k-nearest neighbors model as 
underlying classifiers (Table 5, phase 1). A second model 
was also generated in which the training set consisted of 
all ‘active’ spectrophores labeled according their DUD-E 
pharmacological targets, and in which only these ‘active’ 
compounds were used to train the particular model 
(hence no ‘inactives’ in this training set). This multiclass 
model was used in the second phase of the virtual screen-
ing experiment to assign the most likely pharmacological 
target label to each of the ‘active’ compounds that were 
selected during the first phase. The best multiclass model 
with ‘precision’ as evaluation parameter was the Extra 
Trees classifier (Table 5, phase 2). Cross-validated preci-
sion scores for this model are given in Table 6.

Virtual screening of a test set
The Enamine HTS compound collection [54] was down-
loaded as a test set and the 1735,523 compounds were 
converted into their respective spectrophores using the 
same protocol as for the training set. Screening of this 
test set was performed in two phases (Fig.  8). In the 
first phase, all Enamine spectrophores were classified as 
either ‘active’ or ‘inactive’ according the prediction cal-
culated by the phase 1 classifier (Fig.  8 and Table 5). In 
total, 93 of these spectrophores were labeled as ‘active’. In 

Table 4 Cross-contamination between the seven cluster types

Cluster types are defined in Fig. 7. For each cluster, the total number of different ring members as well as the number of rings of a certain cluster type are indicated. 
For example, of the 12 ring type members in cluster 0, eleven of these rings (91.7%) are of type 0; one ring (8.3%) is of type 5 and therefore misclassified. Ring types 0, 
1, 3, 5 and 6 are best separated from the other types, while ring clusters 2 and 4 are merely a mixture of different other types
a See Fig. 7 for ring definitions

Cluster (linker 
type)a

Total number of rings 
in cluster

Number of rings of given linker type:

Type 0 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Other

0 12 91.7% – – – – 8.3% – –

1 12 – 83.3% – – 8.3% – – 8.3%

2 10 20.0% 10.0% 20.0% – – – – 50.0%

3 4 25.0% – – 75.0% – – – –

4 17 – 35.3% – – 47.1% – – 17.6%

5 8 – – – – – 100.0% – –

6 9 – – – – – – 88.9% 11.1%

Fig. 7 Overview of the seven identified ring templates. Black spheres 
indicate attachment points of the ring sidechains, red spheres 
indicate a hydrogen bond acceptor pharmacophore and a blue 
sphere indicates a hydrogen bond donor pharmacophore point. The 
numbers on each ring identifies the cluster number. The number of 
ring members in each cluster is summarized in Table 4
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the second phase, all 93 ‘actives’ were filtered through the 
phase 2 classifier model in which each of these spectro-
phores were labeled with one of the 102 possible phar-
macological classes according to the prediction made 
by phase 2 classifier. In total, 32 different labels were 
assigned to each of the 93 spectrophores. The results are 
summarized in Table 6 and demonstrate that 2/3 of all 93 
spectrophores (read: compounds) are assigned to only 
seven pharmacological classes: acetylcholinesterase (25 
compounds), tyrosine-protein kinase SRC (10) and LCK 
(4), dopamine receptor D3 (9), peroxisome proliferator-
activated receptor α (4) and γ (5), and thrombin (5). The 
quality of these predictions (expressed as ‘precision’) 
ranges from ‘low’ (0.33, 0.38, and 0.42 for the peroxisome 
proliferator-activated receptor α and γ, and thrombin, 
respectively), over ‘medium’ for the two tyrosine-protein 
kinases SRC and LCK (0.53 and 0.57, respectively), and 
up to ‘good’ for the dopamine D3 receptor and acetyl-
cholinesterase (0.67 and 0.74, respectively). The highest 
quality models in term of ‘precision’ are those for farnesyl 
transferase (0.98), β-glucocerebrosidase (0.81) and dihy-
droorotate dehydrogenase (0.87).

Validating the two highest quality models
According Table  6, the two best models are farnesyl 
diphosphate synthase and dihydroorotate dehydroge-
nase, with tenfold cross validated specificity values of 
0.980 ± 0.016 and 0.870 ± 0.042, respectively. For each of 
these targets only a single compound from the Enamine 
library was predicted to bind, and these structures with 
corresponding Enamine codes are given in Table 7. The 
calculated distances, expressed as Tanimoto and Euclid-
ean distances, between each of the two hits and the cor-
responding actives from the DUD-E dataset are plotted 
in Fig. 9.

Focusing in first instance on the farnesyl diphosphate 
synthase target, the hit retrieved from the Enamine HTS 
library for this enzyme was Z2181651281, a compound 
also known as ibandronic acid and described as a potent 
farnesyl pyrophosphate synthase inhibitor [55]. Unfor-
tunately, this compound was also one of the 85 com-
pounds that were part of the DUD-E training set used 
to derive the farnesyl diphosphate synthase model, and 
therefore we cannot conclude that the model has been 

Table 5 Summary of the classifier models that have been 
used in the two phases of the virtual screening experiment

a Parameters as implemented in the scikit-learn package
b Mean and standard deviation calculated from tenfold cross-validation

Phase Classifier with  parametersa Precision ± SDb

Phase 1 (binary 
classification)

Soft voting classifier with 2 underly-
ing models:

Random forest classifier:
 criterion = ‘entropy’; max_fea-

tures = ‘log2’; n_estimators = 30 
k-nearest neighbors classifier:
 n_neighbors = 28; weights = ‘uni-

form’

0.80 ± 0.07

Phase 2 (multi-
class)

Extra Trees classifier:
 max_features = None; crite-

rion = ‘gini’; n_estimators = 90; 
min_samples_leaf = 1

0.63 ± 0.01

Table 6 Results from the final screening phase in which all 
93 ‘active’ compounds were labeled according their pre-
dicted pharmacological target

The number of compounds that are assigned to each particular class is indicated 
(‘#’), as well as the tenfold cross-validated precision for each target as an 
indicator of the prediction quality for each class

Target # Cross-validated 
precision ± SD

Acetylcholinesterase 25 0.742 ± 0.028

Tyrosine-protein kinase SRC 10 0.532 ± 0.038

Dopamine D3 receptor 9 0.668 ± 0.024

Peroxisome proliferator-activated receptor γ 5 0.384 ± 0.022

Thrombin 5 0.425 ± 0.022

Tyrosine-protein kinase LCK 4 0.570 ± 0.035

Peroxisome proliferator-activated receptor α 4 0.331 ± 0.031

ADAM17 2 0.487 ± 0.033

β-2 adrenergic receptor 2 0.520 ± 0.033

Epidermal growth factor receptor erbB1 2 0.559 ± 0.028

Protein farnesyl transferase/geranylgeranyl 
transferase type I α subunit

2 0.469 ± 0.022

Histone deacetylase 8 2 0.460 ± 0.037

TGF-β receptor type I 2 0.818 ± 0.043

Cyclin-dependent kinase 2 1 0.649 ± 0.041

Cytochrome P450 3A4 1 0.742 ± 0.088

Coagulation factor VII 1 0.657 ± 0.050

Focal adhesion kinase 1 1 0.661 ± 0.033

Farnesyl diphosphate synthase 1 0.980 ± 0.016

β-glucocerebrosidase 1 0.861 ± 0.082

Histone deacetylase 2 1 0.415 ± 0.048

Human immunodeficiency virus type 1 
protease

1 0.435 ± 0.029

HMG-CoA reductase 1 0.640 ± 0.059

Stem cell growth factor receptor 1 0.474 ± 0.059

MAP kinase-activated protein kinase 2 1 0.805 ± 0.053

Poly [ADP-ribose] polymerase-1 1 0.597 ± 0.014

Peroxisome proliferator-activated receptor γ 1 0.467 ± 0.035

Dihydroorotate dehydrogenase 1 0.870 ± 0.042

Renin 1 0.704 ± 0.061

Retinoid X receptor α 1 0.811 ± 0.027

Trypsin I 1 0.363 ± 0.010

Tryptase β-1 1 0.627 ± 0.059

Vascular endothelial growth factor receptor 2 1 0.512 ± 0.036
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able to identify a novel farnesyl diphosphate synthase 
inhibitor. However, in Fig.  9, the Euclidean and Tani-
moto distances between Z2181651281 and each of the 
85 DUD-E compounds are plotted (green dots). Inspec-
tion of these Euclidean distances reveal three other com-
pounds that have a significant spectrophore similarity to 
Z2181651281 (Euclidean spectrophore distance ≤ 50). 
The structures of these three compounds, together 

with their topological and spectrophore distances to 
Z2181651281, is given in Table  8. All these compounds 
are bisphosphonates and are structurally very similar as 
reflected by the large spectrophore similarities. However, 
the calculated Tanimoto similarities range from 0.36 to 
0.67, values which are significantly below the generally 
accepted cutoff of 0.85 to reflect chemical similarity [56]. 
Hence, these compounds would not have been retrieved 

Fig. 8 Representation of the virtual screening flow and its two phases (phase 1 and phase 2 screening). Orange arrows indicate the ‘training’ pass 
using the DUD-E dataset as training set, and blue arrows the ‘screening’ pass with the Enamine HTS library as input set. The generated output 
consists of a list of spectrophores (corresponding to Enamine molecules) labeled with their most likely pharmacological target. In total, the 93 
spectrophores were assigned to 32 different labels (out of the 102 possibilities)

Table 7 Structure and Enamine codes of the two compounds that were predicted to hit farnesyl diphosphate synthase 
(left) and dihydroorotate dehydrogenase (right) according the phase 2 classification model

Farnesyl diphosphate synthase Dihydroorotate dehydrogenase

Z2181651281

Z2465619914
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as putative farnesyl diphosphate synthase inhibitors 
when searched with topological fingerprints and a Tani-
moto similarity cutoff ≥ 0.7, while using spectrophores 
in combination with an Euclidean distance cutoff ≤ 50 
would have retrieved all three compounds.

The single compound identified as hit of dihydrooro-
tate dehydrogenase is Z2465619914 (Table 7). This com-
pound is also known as brequinar and has been described 
as a potent dihydroorotate dehydrogenase inhibitor [57], 
hence validating our virtual screening approach using 
spectrophores as similarity metric. Within the DUD-E 
dataset, there are 17 compounds having a spectrophore 
Euclidean distance less than 50 to Z2465619914 (Fig. 9). 
The structures of these compounds are shown in Table 8. 
From this table it is clear that most of these 17 com-
pounds are quite similar to Z2465619914, however six of 
these compounds have a Tanimoto similarity ≤ 0.7 while 
their spectrophore similarity is still within the cutoff 
window of 50. Hence the same conclusion as for farnesyl 
diphosphate synthase can be made here: these com-
pounds would not have been retrieved as putative inhibi-
tors when searched with topological fingerprints and 
a Tanimoto similarity cutoff ≥ 0.7; however a different 

result would have been obtained using spectrophores in 
combination with an Euclidean distance cutoff ≤ 50.

In vitro biochemical validation of the predictions
In order to validate the predictions in an orthogonal 
manner, in  vitro biochemical testing of the inhibitory 
activities of some of the compounds was performed. 
Driven by the availability of a number of in house bio-
chemical assays on the one hand, but on the other hand 
also being limited by financial restrictions, we selected 
acetylcholinesterase (medium quality model, see Table 6) 
and thrombin (low quality classification model) as phar-
macological targets for the biochemical validation. As 
shown in Table  6, five compounds were predicted to 
target thrombin and 25 compounds targeted acetylcho-
linesterase; hence these 30 compounds were ordered 
from Enamine in 5 mg solid state quantities each. All 30 
purchased compounds were tested in both biochemi-
cal assays in concentrations ranging from 100 to 1  μM. 
Acetylcholinesterase activity was determined by a kinetic 
assay using the indicator 5,5′-dithiobis-(2-nitroben-
zoic acid) (DTNB, Ellman’s reagent) and the substrate 
acetylthiocholine iodide (Km = 420 μM) at concentration 
500 and 400 μM, respectively. All the experiments were 
conducted in duplicate at 25 °C in a 100 mM phosphate 
buffer at pH 7.8. Control experiment using a commercial 
inhibitor of acetylcholinesterase, neostigmine methyl sul-
fate  (IC50 ≈ 40 nM), was included in each screening assay. 
Thrombin activity was determined by a kinetic assay 
using the chromogenic substrate Biophen CS-21(66) 
(pyro-Glu-Pro-Arg-pNA∙HCl, Km = 400  μM) at 415  μM 
concentration. All the experiments were conducted in 
duplicate at 37  °C in 50  mM HEPES buffer at pH 8.1. 
Control experiment using a commercial inhibitor of 
thrombin, gabexate mesylate (Ki = 500 nM) was included 
in each screening assay. Detailed protocols for the bio-
chemical assays are described in Additional file 2: S2.

The results obtained from the biochemical assays are 
summarized in Table 9. Protocols used for the biochemi-
cal assays are described in Additional file 2: S2. Many of 
the compounds were difficult to solubilize in the assay 
buffers, so the highest concentration at which meas-
urements could be done was determined by the actual 
compound solubility. Additionally, acetylcholinesterase 
is very sensitive to the presence of DMSO, therefore the 
final test mixture contained 0.25% of DMSO, limiting 
range of the compound concentrations tested to low-
micromolar values. In case of thrombin, the enzyme can 
tolerate better the presence of DMSO; the final percent-
age of DMSO in the test mixture was 2.5%, allowing to 
test the compounds at slightly higher concentrations. 
Focusing in first instance on the results obtained for the 
low-quality target thrombin, none of the five compounds 

Fig. 9 (Green dots) Calculated distances between Z2181651281 and 
all of the farnesyl diphosphate synthase inhibitors from the DUD-E 
dataset (85 compounds) expressed as spectrophores (Euclidean 
distance, abcis) and topological fingerprints (Tanimoto distance; 
ordinate). (Blue dots) Same as for the green dots, but now for 
Z2465619914 and all of the dihydroorotate dehydrogenase inhibitors 
from the DUD-E dataset (111 compounds). The red shaded area high-
lights all DUD-E actives that are within an Euclidean distance of 50 
from Z2181651281 or Z246561914. For farnesyl diphosphate synthase 
(green), the are 4 such compounds (including Z2181651281), and for 
dihydroorotate dehydrogenase (blue) there are 17 such compounds
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Table 8 All farnesyl diphosphate synthase and dihydroorotate dehydrogenase inhibitors from the DUD-E library 
with an Euclidean spectrophore distance less than 50 from their corresponding reference structures (Z2181651281 
and Z2465619914, respectively)

Structure of the closest DUD-E farnesyl  
diphosphate synthase inhibitors

Euclidean distance to Z2181651281
(spectrophore)

Tanimoto distance to Z2181651281
(topology)

37.8 0.673

27.1 0.470

45.9 0.362

25.1 0.944

48.1 0.891

18.8 0.882

45.5 0.876
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Table 8 continued

Structure of the closest DUD-E farnesyl  
diphosphate synthase inhibitors

Euclidean distance to Z2181651281
(spectrophore)

Tanimoto distance to Z2181651281
(topology)

42.7 0.821

39.9 0.753

48.1 0.751

34.8 0.750

33.5 0.742
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Table 8 continued

Structure of the closest DUD-E farnesyl  
diphosphate synthase inhibitors

Euclidean distance to Z2181651281
(spectrophore)

Tanimoto distance to Z2181651281
(topology)

36.0 0.725

41.4 0.717

47.6 0.696

36.6 0.691

26.5 0.668
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that were predicted to target thrombin actually inhib-
ited this enzyme at concentrations lower than 100  μM. 
Although this may seem disappointing at first sight, one 
should bear in mind that the phase 2 classification model 
for thrombin is of very poor quality (cross-validated pre-
cision of 0.425 ± 0.022; see Table  6) and that only five 
compounds were predicted to bind this pharmacologi-
cal target. However, the results were far more encourag-
ing for acetylcholinesterase. The phase 2 classification 
model for acetylcholinesterase was of much higher qual-
ity in terms of cross validated precision (0.742 ± 0.028; 
Table 6), and this is reflected in the fact that 2 out of the 
25 predicted compounds (Z44853616 and Z1723688652) 
from the Enamine library showed inhibitory activ-
ity against this target at  IC50 values lower than 1  μM 
(Table 9).

The two identified acetylcholinesterase inhibitors are 
topologically quite diverse but are very similar in spectro-
phore space. As shown in Fig. 10, the Tanimoto distance 
between the topological fingerprints generated from both 
compounds is 0.49 (calculated with RDKit [59]), a value 
far below the 0.85 cutoff that is commonly used to reflect 
similar bioactivities [56]. However, the Euclidean distance 

between the spectrophores of both compounds is on the 
lower edge of the spectrum (Fig. 10; red dot), indicating 
high similarity from a spectrophore’s point-of-view. In 
addition, none of the two identified compounds possess 
any significant topological similarity to any of the 453 
acetylcholinesterase inhibitors from the DUD-E dataset 
(all Tanimoto distance are less than 0.6), indicating that 
these two compounds would likely not have been identi-
fied from the DUD-E dataset when these topology-based 
fingerprints would have used as similarity criterion. The 
lack of correlation between the Spectrophore and topo-
logical fingerprint distances is also clear from Fig. 10. The 
calculated squared correlation coefficients r2 are 0.043 
and 0.004 for Z44853616 and Z1723688652, respectively.

Implementation
The current spectrophore algorithm has been imple-
mented in three separate frameworks: 1) an Open Babel 
implementation written in C++ (OBSpectrophore 
[58, 59]), 2) an RDKit version written in Python and 
C++, and 3) an RDKit implementation coded entirely 
in Python. On a personal computer equipped with an 
i7-5500U processor with 12  GB of main memory, the 

Table 8 continued

Structure of the closest DUD-E farnesyl  
diphosphate synthase inhibitors

Euclidean distance to Z2181651281
(spectrophore)

Tanimoto distance to Z2181651281
(topology)

36.0 0.648

40.3 0.594

46.3 0.558

The correlation coefficient  r2 calculated between the spectrophore (euclidean) and the topological distances (Tanimoto) is 0.027
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Table 9 Chemical structures, Enamine codes, and inhibition percentages at given concentrations of the 30 compounds 
tested against both the acetylcholinesterase and thrombin assays

Enamine code and structure Predicted  targeta Acetylcholinesterase assay/compound concen-
tration (μM)

Thrombin assay/com-
pound concentration 
(μM)

25 10 2.5 1 100 50 25 10

Z1127326406

A 48% – 3% – 0% – – 0%

Z1162446000

A 31% – 0% – – 4% – 0%

Z1170274287

A – – 0%b – – – 0% 0%

Z1172207728

A – 21% 0% – – – 0% 0%

Z1172207729

A – 27% 0% – – – 6% 5%

Z1172207762

A – – 1%b – – – 0% 0%
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Table 9 continued

Enamine code and structure Predicted  targeta Acetylcholinesterase assay/compound concen-
tration (μM)

Thrombin assay/com-
pound concentration 
(μM)

25 10 2.5 1 100 50 25 10

Z1172207773

A – 18% 0% – – – 0% 0%

Z126123678

A – 0% 0% – 0% – – 0%

Z1692518876

A – 25% (5 μM) 8% – – – – 0%

Z1718780332

A – 0% 0% – – 0% – 0%

Z1723688652

A – – 75% 60% – – 0% 0%

Z1723689070

A – 22% 7% – 0% – – 0%

Z1752029227

A – 4% 1% – – 0% – 0%

Z1752097761

A – 41% – 14% – – 0% 0%
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Table 9 continued

Enamine code and structure Predicted  targeta Acetylcholinesterase assay/compound concen-
tration (μM)

Thrombin assay/com-
pound concentration 
(μM)

25 10 2.5 1 100 50 25 10

Z1752098217

A – 44% – 14% 9% 2% – 0%

Z195597634

A – 1% 2% – – 0% – 0%

Z220337142

A – 8% (5 μM) 0% – – 0% – 0%

Z225639026

A – 0% 0% – 4% – – 0%

Z238808040

A – 0% 0% – 0% 0% – 0%

Z410727678

A – 11% – – – – 0% 0%

Z44853616

A – – 82% 51% (0.25 μM) – – 0% 0%

Z642077426

A – 31% 16% – 0% 0% – 0
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Table 9 continued

Enamine code and structure Predicted  targeta Acetylcholinesterase assay/compound concen-
tration (μM)

Thrombin assay/com-
pound concentration 
(μM)

25 10 2.5 1 100 50 25 10

Z89250946

A – 32% 11% – 0% 0% – 0%

Z900767332

A – 10% – – – – – 0%

Z90946480

A – 35% 7% – – 6% – 0%

Z1227481047

T – 48% 19% – – 7% – 0%

Z217641306

T – 31% 8% – 0% – – 0%

Z295847238

T – 23% 0% – – 0% – 0%

Z366499080

T – 0% – – – 4% – 0%

Z510005154

T – 0% – – 0% 0% – 0%

For each compound, the highest concentration for measurement was determined by the solubility of the compound
a Predicted target: ‘A’ stands for acetylcholinesterase, ‘T’ for thrombin
b These compounds could not be tested at higher concentrations due to poor solubility in the acetylcholinesterase buffer solution
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Open Babel version runs fastest, with an average calcu-
lation speed of 36 ± 2 ms/molecule. On the other hand, 
the code entirely written in Python performs the same 
calculations 140 times slower (4950 ± 79  ms/molecule). 
The mixed Python/C ++ implementation in RDKit is 
only 3 times slower than OBSpectrophore, performing 
the same calculations at an average speed of 102 ± 2 ms/
molecule.

Conclusions
The spectrophore is a novel descriptor that reflects, in a 
virtual manner, the way how molecules are binding to a 
set of artificial receptors, taking into account the spatial 
interactions between a molecule and its surroundings. 
Because of these unique properties, the spectrophore 
can be considered to be a one-dimensional mathematical 
description of a three-dimensional pharmacophore. This 
makes it applicable for a wide range of cheminformatics 
approaches, including virtual screening using sophisti-
cated statistical models and clustering approaches. Suc-
cessful applications in the area of scaffold hopping and 
virtual screening have been demonstrated in this study.

In the multi-target virtual screening experiment, all 
compounds were treated as neutral and they were not 
ionized according to their physiological pH. This could 
be one of the factors explaining the poor model qual-
ity of the thrombin target (Table 6), as it has been dem-
onstrated that many of the thrombin inhibitors carry a 
positively charged functional group as a common feature 
binding into the P1 pocket of thrombin [60]. Although 
the current setup was sufficient for our novel proof-
of-concept study such as this work, in a real-world vir-
tual screening experiment the correct pretreatment and 
washing conditions for each compound would need to be 
carefully determined [61].

The spectrophore technology is one of the many exist-
ing descriptors that may be used in the field of chem-
informatics and could be useful to compare some of 
these. However, we believe that descriptor comparison, 
by evaluating their performance in clustering and vir-
tual screening, is a difficult and very subjective task as 
2D- and 3D-descriptors are fundamentally different in 
the way they represent molecules. Therefore, this will 
lead to fundamental differences in the outcome of a vir-
tual screening experiment. Rather than comparing these 
technologies in an attempt to identify the ‘most power-
ful one’ (by whichever criterion is selected), we believe 
that it would be more useful to integrate many of these 
orthogonal molecular representations into a unified 
machine learning model, with the goal of developing 
a virtual screening toolbox with optimized predictive 
power. Research into such an approach is currently ongo-
ing in our laboratory.

The spectrophore technology could also be extended 
to describe and compare protein pockets. In this case, 
the spectrophore approach needs to be modified in such 
way that the protein pockets, along with their structural 
and electronic properties, are converted into a type of 
mirror image from which the corresponding spectro-
phore can be calculated. Research is currently also on-
going to investigate the feasibility and applicability of this 
approach.
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