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Abstract

Peptide drug development is currently receiving due attention as a modality between small and large molecules.
Therapeutic peptides represent an opportunity to achieve high potency, selectivity, and reach intracellular targets.

A new era in the development of therapeutic peptides emerged with the arrival of cyclic peptides which avoid

the limitations of parenteral administration via achieving sufficient oral bicavailability. However, improving the mem-
brane permeability of cyclic peptides remains one of the principal bottlenecks. Here, we introduce a deep learn-

ing regression model of cyclic peptide membrane permeability based on publicly available data. The model starts
with a chemical structure and goes beyond the limited vocabulary language models to generalize to monomers
beyond the ones in the training dataset. Moreover, we introduce an efficient estimator2generative wrapper to enable
using the model in direct molecular optimization of membrane permeability via chemical modification. We name our
application C2PO (Cyclic Peptide Permeability Optimizer). Lastly, we demonstrate how a molecule correction tool can
be used to limit the presence of unfamiliar chemistry in the generated molecules.

Scientific contribution: We provide an ML-driven optimizer application, named C2PO, that returns structurally modi-
fied cyclic peptides with an improved membrane permeability, one of the pivotal tasks in drug discovery and devel-
opment. C2P0O is a first-in-class application for cyclic peptide permeability amelioration, in that it converts a ML model
into a generative optimizer of chemical structures. Additionally, through demonstration we incentivize the usage

of an automated post-correction tool with a chemistry reference library to correct strange chemistry outputs

from C2PO, a known issue for ML-generated chemical structures.
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Introduction

Today, the dominant class of therapeutics are small
organic molecules [1, 2]. They exhibit many advantages,
among others, straightforward and low-cost synthesis,
tunable bioactivity, and good membrane permeabil-
ity and cell uptake [3]. However, due to their small size,
they may be promiscuous ligands, possibly binding to
unintended targets causing adverse side effects. Moreo-
ver, their small size makes them inherently suboptimal
for disrupting large molecule interactions, e.g. protein—
protein interactions [4]. Hypothetically, these drawbacks
can be overcome by turning to peptide-based therapeu-
tics which, due to their larger size, potentially exhibit a
broader applicability and display higher selectivity [3].
Indeed, peptides have enjoyed increasing attention in the
last decades, leading to an approximate 6% share in the
FDA-approved drugs by mid-2022 [1].

An appealing subclass of peptides are cyclic peptides.
By constraining the conformational flexibility of a pep-
tide chain, the target affinity and selectivity can be fur-
ther improved. Furthermore, cyclisation of the peptide
structure increases protection against proteolysis, a weak
point of linear peptide structures [5]. As such, cyclic
peptides represent a unique class that unlocks the drug-
gability of new targets [6]. Even though they do not com-
ply with the conventional rule-of-five of Lipinski, their
increased permeability relative to linear peptides can
be attributed to their chameleonic propensity, i.e., they
adopt an open conformation when exposed to aqueous
solutions, while converting to a closed conformation
when entering hydrophobic environments [7-9]. Unfor-
tunately, cyclisation and the associated chameleonic
effect is not an infallible solution for all cases of poor cell
permeability [10, 11].

A wide plethora of synthetic modifications are inves-
tigated and deployed to achieve favorable permeability
properties [12, 13]. Common strategies include N-meth-
ylation [10, 11], substitution of amide bonds [14, 15],
induction of steric occlusion through chemical modifi-
cation [16], and alteration of the conformational popu-
lation [17, 18]. However, estimating the effect of certain
synthetic modifications on cyclic peptide permeability is
not straightforward. An intermediate solution is to train
a machine learning (ML) model on known permeabil-
ity data to support decision-making. Recently, Li et al
released the CycPeptMPDB dataset of literature-collected
permeabilities of cyclic peptides [19]. Since then, various
contributions have published ML models to evaluate the
permeability of cyclic peptides [20—-27]. Such models can
be used by medicinal chemists to obtain an indication of
the cell permeability of envisioned novel peptides.

We herein present an ML-powered application that
returns, given a starting structure, chemically modified
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cyclic peptides with an improved in-vitro permeability
(Fig. 1). At the core of our application sits a molecular
structure optimizer that is controlled by an underlying
permeability ML model, which we present as estimator-
2generative. As such, we introduce an alternative to the
more commonly deployed direct generative ML models,
where the structure-proposer is tied to a pre-trained ML
model. We have named our model C2PO, an abbrevia-
tion for Cyclic Peptide Permeability Optimizer.

When it comes to optimizing or generating new
chemical structures using ML, maintaining chemical
validity often proves challenging, as models are not
aware of the concept of chemical soundness. Typical
ways of improving chemical validity of the generated
molecules include: the post-filtering of incorrect or
unwanted chemistry and re-iterating generative tasks
until a satisfied number of generated molecules is col-
lected, or the introduction of rules within the model to
enforce the output of sane molecules. For the proper
functioning of these approaches, one needs to explicitly
define and implement valid chemistry, which is both
delicate and time-consuming. Moreover, when imposed
in the forms of restraints within the model itself, inter-
ference with the optimization process will occur. This
reduction in generative flexibility can result in subop-
timal optimization tasks. We circumvent these issues
by taking an alternative route and attach a previously
developed automated molecular correction tool as a
post-processing step [28].

In the Results section of this work, the general out-
comes of the molecular modification (the first step) and
subsequent molecular correction (the second step) are
expounded. This informs the reader about what one
can expect from applying the proposed strategy. Subse-
quently, we take a deep dive in the Discussion section. In
summary, our principal objectives are to incentivize the
usage of the proposed estimator2generative model in all
types of medicinal chemistry tasks and to showcase the
elegance of using a subsequent dictionary-based correc-
tion protocol instead of hard-coding valid chemistry or
post-filtering.

Method

ML estimation model

The target model is dictated to start with the chemical
structure and to optimize the structure without being
limited to using, for instance, amino acid vocabulary.
The ML model of cyclic peptide membrane permeability
was trained using the public CycPeptMPDB [19] data-
base, pulled on June 1st, 2024. Eighty percent of in total
7,451 measurements in the dataset were used for train-
ing the model while the remaining entries were equally
split into a test and a validation set. More information
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Fig. 1 A visualization of the Cyclic Peptide Permeability Optimizer (C2PO). The application accepts a cyclic peptide structure and improves

the permeability by mutating the chemical structure. C2PO bases its optimizations on a pre-trained machine learning (ML) estimation model.
ML-driven applications have the tendency to (occasionally) propose strange chemistry. We let a chemical library-based auto-correction tool identify
on foreign chemistry and subsequent correction, instead of a manual evaluation by experts. The auto-corrector tool used here is the one published
by Kerstjens and De Winter [28]. The depicted structures are real examples extracted from the case study performed in this contribution (vide infra;
first campaign in Fig. 4). The model outputs multiple optimized structures. Here the best so-called offspring molecule is depicted (top right). The
N-S bond in the output compound'’s structure might be identified as questionable chemistry. However, the autocorrection application ruled this
structure to be familiar. The initial compound was selected from the public CycPeptMPDB database(CycPeptMPDB ID: 3109)

on the presence of multiple permeability entries of the
same peptide and the dataset split strategy can be con-
sulted in the Supplementary Information (see Additional
file 1). A Graph Transformers deep learning architecture
was used due to the reported state-of-the-art perfor-
mance of this class of deep learning (DL) architecture
across various applications [29]. A depiction of the ML
estimation model can be consulted in Fig. 2. The model
architecture follows the framework from GRAPHGPS
[30] which provides a combination of the local informa-
tion from message-passing with the global information
from the multi-head attention. The graphs are generated
starting from the SMILES using RDKit [31]. Random
walk positional encoding [32] is used to encode the posi-
tional information. The range of the global attention is
controlled by an exponential decay as proposed in Grad-
former [33]. The code is implemented using Pytorch [34]
and PyTorch Geometric [35]. More details on the model
architecture, hyperparameters and training settings are
presented in the Supplementary Information (see Addi-
tional file 1).

Estimator2generative optimization wrapper
In natural language processing robustness of models is
often improved when trained using adversarial examples

[36]. These are examples where small changes in the data
change the outcome of the model. Instead of trying to
trick the model to change the outcome, we used these
techniques to optimize the molecules with respect to a
desired value of a property of interest (see Fig. 2, middle
panel, for conceptually understanding the optimization
stage). We based our optimization routine on the Hot-
Flip algorithm [36]. This algorithm approximates the best
possible flip of two tokens based on one neural network
function evaluation (forward pass) and one backward
pass. The adversarial loss (in our case, the desired loss)
can be approximated by:

[’(ydes’f(tdes)) ~ L(ydes'f(t)) + V‘C(yde51f(t)) (tdes - t) (1)

with y4es being the desired value, tges the unknown
desired molecule, y the current property value and t
the current molecule. This loss is then minimized with
respect to tges by:

arg min VL (Ydes,f (t)) (tdes — t) (2)
tdes

Practically, for our graph model we used the embed-
dings of the atom numbers in the graph encoder as t
and t,. in Eqgs. 1 and 2. We limit the flips to a restricted
number of possible atom numbers, avoiding the potential
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Fig.2 An overview of the inner workings of C2PO (Cyclic Peptide Permeability Optimizer), visualizing the method description in the main text.
At the heart sits a ML estimation model (top panel), trained on the CycPeptMPDB dataset [19]. Input SMILES are converted to molecular graphs,
which are steered through a graph transformer model to estimated permeabilities. The trained transformer model is deployed in the optimization
stage (middle panel). The estimator2generative optimization of a molecule using the permeability ML model of the top (orange box) is depicted
in the green box using a fictive example. The optimizer retains the graph size, limiting the search space. Therefore, graphs are manipulated

to either grow or shrink (bottom left). To explore various molecular sizes, C2PO can be operated using parallel optimization tracks (user defined)
and collects the results from all parallel optimizations in a single pool of offspring molecules (bottom right). All molecular depictions and choices
of parameters are fictive, merely serving as illustration of the algorithm’s flow

bias in the optimization when the model chooses chemi-
cal elements rarely seen in training. Since flipping atoms
generally leads to invalid molecules, we only flip once
instead of allowing multiple flips at once as originally
described in the HotFlip algorithm [36]. Instead, we use
one backward pass to flip to the best k atoms at the best k
positions (see Fig. 2, middle panel, with k=2 as example).

The resulting molecules are placed on a priority queue
based on their desired loss. The desired loss for invalid
molecules in this iteration is increased by the maximum
loss of the valid molecules such that invalid molecules are
placed after the valid molecules on the priority queue for
each iteration. Next, we try to improve for a given num-
ber of iterations the top / molecules on this queue (see
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Fig. 2, middle panel, with /=2 as example) and add to it
the newly optimized molecules, like beam search. After
the iterative procedure (dark blue iteration loop m in
Fig. 2, middle panel), all the molecules from the optimi-
zation are placed in a new and separate priority queue
with the Tanimoto similarity to the original compound
subtracted from the desired loss in increasing order. The
approach described so far does not allow the molecule to
grow or shrink.

To broaden the search space of our optimization, we
manipulated the graph data directly and used simple
techniques to grow and shrink the graph while staying
as close as possible to the original graph. Note that this
may result in graphs that no longer represent correct
molecules. To grow the graph, we choose a node at posi-
tion i randomly and place its duplicate at position j. The
node features are identical, and the new node was then
connected to the same nodes as its original, copying the
edge features. This generally will lead to invalid mol-
ecules but can be considered as an intermediate step to
find even better optimizations. To allow for graph shrink-
age, we randomly delete nodes from the graph. Here we
base ourselves on the index of the graph node. We use
the simple heuristic that it is likely that two nodes next to
each other in the list of nodes are connected in the mol-
ecule. Therefore, when we remove a random node from
the graph, we replace the deleted node in its edges with
the previous node, in a way collapsing the deleted node
with the previous node.

Note that the graphs may no longer represent correct
molecules, but these are given to the optimization rou-
tine to broaden the search space. At the end of the rou-
tine (after the optimization iterations), however, graphs
will be converted to SMILES, representing the final out-
put of the optimization. For the output chemical struc-
tures to make sense we pass them through a RDKit
validity check. Invalid molecules are discarded. Chirality
is lost in the process and outputs will, therefore, not con-
tain stereochemical information.

Case study setup

All permeability values are reported in terms of the log-
arithm of the permeability velocity (logP,,,). The val-
ues range between —10 and —4, which is equivalent to
1.0x107'° and 1.0x10™* cm/s, respectively. From all
cyclic peptides in CycPeptMPDB, 700 (~10%) com-
pounds that were classified as having low permeability
(logP,p,, of —6.5 or less), were randomly drawn as starting
points for the permeability improvement through molec-
ular modification with the above-described optimization
model. These drafted systems approximately span the
entire chemical space represented by the CycPeptMPDB
dataset, as detailed in the Supplementary Information
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(see Additional file 1). The starting point of each cam-
paign is referred to as the parent compound. The model
is instructed to return a maximum of 20 offspring com-
pounds per campaign, with a desired permeability value
of -4.5 as objective. It should be noted that the exact,
absolute value of this threshold is not critical and does
not have any specific chemical rationale (see Discussion).
As our model is gradient-based, the desired value merely
serves to provide the optimizer with a direction, with the
goal of shifting ‘low’” permeable peptides towards ‘high’
permeable ones. Only modifications of the peptide side
chains were allowed. RDKit was used to identify the atom
indices constituting the peptide backbone through the
SMARTS pattern search "[C;X4;H1,H2][CX3](=O)[NX3]
[C;X4;H1,H2][CX3](=0)". The peptide backbone macro-
cycle was preserved by retaining cycle sizes consisting of
11 atom members or more using RDKit’s GetRingInfo()
routine. The optimization algorithm was only allowed to
change existing elements to the chemical elements C, N,
O, Cl, E, Br, and S. Upon altering the cyclic peptide, the
model was permitted to return offspring molecules up
to a net removal or insertion of five atoms. The intrinsic
optimization parameters k, /, and m (see Fig. 2, middle
panel) were all set to five. All settings mentioned can be
changed by the user. The Tanimoto similarity measure
was used to estimate structural similarity throughout this
contribution.

Molecule auto-correction

During the last step in our workflow, a dictionary-based
molecular auto-correction tool is applied to inquire
about the validity of a molecule and to subsequently
correct invalid molecules [28]. The output SMILES for-
mats from the first permeability optimization step are
fed to the tool. The drug-like molecules of ChEMBL31
[37] were used as reference to create the dictionary of
chemical validity. For the creation of said dictionary we
set the circular atomic environment radius to 1. The mol-
ecule auto-correction algorithm is implemented as a tree
search, with vertices representing molecules. The input
molecule serves as the root of the tree. At each iteration
the tree is built up by selecting a molecule and enumer-
ating some of its analogs through systematic application
of graph-based perturbations [38]. Which molecules are
selected for expansion, as well as which analogs are enu-
merated, is governed by a set of policies. We refrained
from exploring the available types of policies, and per-
formed molecular correction using the default policies
provided by the developers [28].
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Results

ML estimation model

Underneath the cyclic peptide optimizer sits a trained
ML estimation permeability engine. Hence, the opti-
mizer’s meaningfulness relies on the quality of the per-
meability estimation when presented with a chemical
structure. Figure 3 depicts the comparison between the
true (abscissa) and the estimated permeability (ordi-
nate) for all cyclic peptides contained in CycPeptMPDB
in separate subplots for the train (80%), validation (10%)
and test (10%) splits. Visually, the datapoints in the scat-
terplots of Fig. 3 are concentrated around the equality
diagonal (black line), which is indicative of a meaningful
ML estimation model. This is reflected in the R? Pear-
son correlation (r), and the mean average error (MAE)
values of respectively 0.61, 0.78, and 0.37 for the test set.
Following a comparative analysis with related studies
[20-27], detailed in the Supplementary Information (see
Additional file 1), we conclude to have a state-of-the-art
model. In this contribution we are mainly concerned with
improving permeability upon chemical modification,
and, within this context, utilizing this ML estimation
model is justified. Finally, certain cyclic peptides were
assigned a value of —10 for permeability by the authors
of the CycPeptMPDB work, as the experimental detec-
tion limit did not allow for a proper permeability deter-
mination [19]. We moved this lower bound from —10 to
—8.5 prior to model training and deployment to have the
arbitrary set values closer to the other ones. Our estima-
tion model cannot handle those cases properly, as can be
observed in Fig. 3 as a vertical line at —8.5. Other cases
of structured datapoints on vertical lines can be observed
for instance at —7. This is due to decisions made by either
the original reporters of the experimental values or the
way the authors of CycPeptMPDB interpreted the results.
We do not delve deeper into the specific reasons, as we
estimated its effect to be minimal for our model and case
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study. However, we should note that this has also been
observed for other experimental datasets, such as the
binding affinity values reported in ChEMBL [39]. Here,
we decided to accept the noise that is added as a conse-
quence of retaining these datapoints in the dataset.

Permeability optimization

Now, we turn to the main outcome of this contribution,
namely improvement of permeability by mutating the
chemical structure of cyclic peptides, driven by our devel-
oped estimator2generative optimizer. Figures 4 and 5 are
illustrations of the permeability progressions per indi-
vidual campaign and in property distributions, respec-
tively. In Fig. 4, each vertical line represents a campaign,
where the parent and offspring molecules are assigned a
dark and light grey color, respectively. In total, 13,043 oft-
spring molecules were produced. Based on the Tanimoto
similarity, we identified that there are seldom cases (227
or 1.74%) where the offspring molecule is not changed
with respect to the starting parent compound. In gen-
eral, most proposed cyclic peptides did exhibit an ame-
liorated permeability (higher logP, ). The violin plots in
Fig. 5 also display this upward trend when relating the
offspring with the parent set of compounds. Neverthe-
less, the model does also return cases where optimization
failed (lower logP,, ), albeit these cases are a minority.
The optimization algorithm tries to find atom flips that
improve permeability, but there are cases where no or
only a few better structures are found. In those cases,
the algorithm does return worse offspring compounds.
However, improvements in permeability do not always
translate to successful campaigns. Namely, when analyz-
ing permeability values, one is principally concerned with
categorizing molecules as low or high permeable, with
the threshold approximately around logP,,, of —6.0 [19,
40]. A campaign could be considered successful if at least
one offspring molecule is classified as highly permeable.
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Fig. 3 The true versus ML-estimated permeability for each of the dataset splits CycPeptMPDB. The estimations were performed using our
estimation model, where eighty percent of the data was used for training and ten percent each for validation and testing
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offspring molecule of campaign 1 are visualized in Fig. 1

By using this threshold, we determined that in our case
study 538 (76.86%) campaigns and 5,389 (42.05%) actual
offspring molecules can be considered successful. When
inspecting the offspring violin plot in Fig. 5, the average
(boxplot) can be found around a LogP, . of —6, and the
largest density is found towards —5.6.

Besides the permeability property, we also wanted to
gauge the complexity of the structural changes that were
introduced in the algorithm. Figures 6 and 7 are provided
to shed light on this. The two figures are identical, apart
from the properties loaded as heatmap. Figures 6 and 7
depict the improved permeability versus the measure of
structural change, expressed as the Tanimoto similar-
ity between each offspring and parent compound. This
similarity measure equals 1 for identical molecules. Addi-
tionally, we investigated the permeability optimization
in light of the starting molecular weight and molecular
weight changes, and this is detailed in the Supplementary
Information (see Additional file 1). We do not observe
any relation between the extent of structural transfor-
mations and the improvement of permeability. The heat-
map in Fig. 6 shows the absolute permeability outcomes
for each of the offspring peptides, where indeed, a bet-
ter outcome logically relates to a stronger permeability
jump. Another interesting viewpoint is shown in Fig. 7,
which focusses on the parents’ absolute permeabilities.
When deploying an improvement algorithm, it preferably

app

pp Value. The chemical structures of the parent and best

behaves in such a way that it recognizes the extent of
optimization needed and acts accordingly. Imagine a sce-
nario where one starts from a strongly unfavorable per-
meability (e.g., a logP,,, of —8.0). The algorithm will have
to cover a larger value range than a compound that is
already close to the —6.0 border. The blue points in Fig. 7
are the unfavorable starting points and are subjected
to strong permeability changes (a higher permeability
improvement). Moreover, the model does not necessarily
achieve this by applying stronger chemical modifications,
as we mentioned before. This implies that the model can
identify efficient transformations, and that improvement
is not a mere consequence of an increased number of
chemical modifications.

Chemical structure sanity check

To date, it remains a major challenge to develop gener-
ative models that propose correct chemistry, even when
they are trained on chemical data. Herein, we apply an
automated molecular correction tool. In the first step,
it diagnoses foreign chemical features within molecules
using an underlying chemical reference dictionary.
When foreign hits are present, a subsequent molecu-
lar correction is performed. The dictionary check
ruled 2,931 out of the 12,816 generated offspring mol-
ecules as chemically invalid, being a significant portion
(22.9%) of all the generated offspring compounds. The
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Fig. 5 Violin plots of the permeability values of the 700 parent molecules and the 12,816 offspring molecules. These plots hold boxplot information

and inform about the value distribution through a kernel density plot

downside of our strategy is that an additional chemical
modification step is undertaken, potentially counteract-
ing the initial permeability optimization task. Figure 8
tracks the permeability change upon correction. The
most important observation here is the high and linear
correlation between pre- and post-correction perme-
ability, and that there is no clear trend between scatter
points falling below or above the identity diagonal. This
indicates that the correction process does not systemat-
ically make permeability worse or better. Five scenarios
manifest:

1) the pre-correction offspring’s permeability was suc-
cessfully optimized (above -6.0), and remains opti-
mized after molecular correction (north-eastern
quadrant, I);

2) the pre-correction offspring’s permeability optimi-
zation was not successful, but falls in the desirable
permeability range upon correction (north-western
quadrant, II);

3) both the pre- and post-corrected molecules fall in the
low permeability range (south-western quadrant, III);

4) the desired permeability exhibited by the offspring
compound is lost upon molecular correction (south-
eastern quadrant, IV);

5) the molecular correction mutates the chemical struc-
ture but returns the parent compound of the cam-

paign.

Cases that fall in the northern quadrants (I and II) are
considered positive outcomes, whereas the southern
quadrants represent ultimately (III and IV) failed cases.
Scenario 1 is the desired scenario, as these campaigns
display the desired functioning of the two tools. The
cases in scenario 2 are mere products of coincidence,
as the correction tool is unaware of the permeability
property. Scenario 3 cases align with a logical outcome:
one cannot expect that the second step, merely focused
on molecular correction, co-improves the permeability.
Lastly, scenario 4 are cases where the structural correc-
tion counteracts the initial permeability amelioration
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and is highly undesirable. The number of cases for each
of five scenarios are 881 (scenario 1), 190 (scenario 2),
1,468 (scenario 3), 280 (scenario 4), and 112 (scenario
5). For the two eastern quadrants, most cases fall into
the desired quadrant I. However, one should keep in
mind that negative scenarios because of attaching the
two tools together do occur (scenario 4). Lastly, Fig. 8
portrays the similarity heatmap between the structure
of the corrected offspring molecule and the campaign’s
parent compound. No correlation between this similar-
ity and the quadrants are observed.

Discussion

From the presented results, we can conclude that the
overall framework herein performs as desired. The model
does propose permeability-optimized cyclic peptides for
most of the cases. It behaves in line with such a model,
namely it suggests structure efficient ways of modify-
ing cyclic peptides towards improving permeabilities

and suggests potential improvement paths according to
the extent of required optimization (strong permeability
improvement for strongly unfavorable starting points).
Then, most of the offspring cases, submitted to auto-
mated molecular correction, do not see the optimized
permeability annulled. This workflow, in its current form,
can be deployed to assist in improving permeabilities of
cyclic peptides. It should be emphasized that this con-
tribution did not pursue obtaining as many successful
optimization campaigns as possible. It is up to the user
to deploy this method to accomplish specific objectives.
Our core estimation model is not a perfect perme-
ability value estimator, and caution should be practiced
when interpreting the results. We demonstrated that our
estimation model performs in line with related models,
without pushing the limit to outperform them. Our cur-
rent model can potentially be ameliorated by adopting
a multimodal approach, i.e., feeding the ML model with
different data structures and molecular information. This
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is beyond the scope of the present work. In addition, we
tried to conduct an independent validation of our per-
meability estimator model in case of the so-called opti-
mized offspring. This validation failed, as expounded in
the Supplementary Information (see Additional file 1).
The advised manner to consider the absolute values out-
putted is to use them to categorizing molecules in low or
high permeability classes [40]. Here, we set the thresh-
old at —6.0 logP,,, for pragmatic reasons. We envision
our methods to be used by chemists as an idea generator.
When presented with a structure, the model suggests a
set of optimized molecules. Those that surpass the pro-
visioned threshold may be valid options, and, based on
the exact output permeability value, hints are provided
as to rankings within this set of potentially valid options.
Again, be aware that this ranking is fallible.

We understand that our case study does not necessar-
ily reflect the objectives of future users. Here, only side
chains are suggested by the algorithm and modifications
are allowed to increase or reduce the number of atoms
by five (see Methodology). These factors can be changed

according to the desires of the user. Firstly, our model
supports flexibility as to instructing the model in retain-
ing and/or modifying certain types or specific parts of
starting molecules, for instance, allowing changes in the
backbone of peptides or to keep the principal parts of the
cyclic peptide for binding to the target. For instance, it
is possible for cyclic moieties (cyclic systems in the side
chains, disulfide-cyclized peptides, etc.) to be disrupted
in our presented case study. If desired, these moieties
can be protected through different settings. Secondly, the
pool of chemical elements the model can use to replace
existing atoms can be specified, although one should be
aware that the underlying estimation model is trained on
compounds containing specific chemical elements. For
example, one can opt to allow carbon-atom insertions
only. Thirdly, often times generated molecules remain
highly like the starting point. The net atom insertions
or deletions can be specified. Fourthly, the model can be
retrained using different data if desired, in case the user
has a custom dataset or when an extended or alternative
dataset is published in the future. Lastly, it is advised that
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the optimization parameters k, /, and m are altered to
satisfy the needs of the study. In our case, we obtained a
decent result with an ad hoc choice of these parameters,
and did not systematically probe the optimization perfor-
mance versus the values of parameters k, [, and m.

Then, consider the second step in our workflow: the
molecular correction powered by a chemical validity dic-
tionary. In most cases the post-correction of successfully
optimized offspring compounds (from step 1 in the work-
flow) preserves the desired permeability. However, there
are scenarios where permeability worsens upon chemical
correction, causing them to return to the low permeabil-
ity category. Nevertheless, post-applying the auto-correc-
tion tool is appealing due to its speed (no development
needed, quick execution upon inquiry) and lack of inter-
ference with the optimization engine of the model. The
flip of the coin of this black-box tool is that one relies

heavily on the database used within the dictionary. Here
we utilized the ChEMBL dataset as in the original study
of the molecular auto-correction tool, which is meaning-
ful chemistry in our opinion. The user has the option to
customize the underlying dictionary by feeding it with a
dataset of own selection [28].

On a more technical note, the current two independ-
ent steps of molecular optimization and correction can
be interfaced more deeply. As both software packages are
capable of manipulating RDKit mol objects, it becomes
possible to directly send compounds as mol objects from
C2PO to the auto-correction tool. This means that an
intermediate rendering and validity check by RDKit is
skipped (transferring full responsibility for structural
validity to the molecular auto-correction tool), poten-
tially leading to a higher throughput of the optimization
to the correction tool and a better overall result. An even
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deeper connection between the two applications can be
established by defining the ML permeability estimation
model as an objective function for setting up an explicit
objective preservation selection policy within the auto-
correction tool. As such, the algorithm will be simul-
taneously optimizing the permeability objective and
chemical correctness. The downside of any of the integra-
tions mentioned is that the two applications are strictly
tied together (no intermediate SMILES outputs), remov-
ing their independent functioning and deployment. Here
we opted to keep the two steps separate, but it is impor-
tant to be aware of the possibility of linking tools together
through different data formats, as is the case here.

Finally, for researchers that will use the C2PO frame-
work to tackle different optimization questions, including
other chemistry and molecular properties, it is advised
to play around with all the settings to reach an adequate
performance. The parameters we utilized here are not
necessarily transferable to other scientific questions.

Conclusion

Generally, cyclic peptides lack adequate membrane
permeability to be developed into medicines. We pro-
pose C2PO (Cyclic Peptide Permeability Optimizer), an
application that improves permeability by modifying the
chemical structure of a given cyclic peptide. C2PO is
ML-driven, trained on the experimental CycPeptMPDB
dataset, and can be categorized in the estimator2genera-
tive optimization paradigm (Fig. 2). However, ML-based
applications that output chemical structures, as is the
case here, have the tendency of (occasionally) propos-
ing strange chemistry. This is attributable to the loss of
chemical knowledge, although it is generally considered
to be implicitly learned. Therefore, we opted for checking
and correcting (where needed) the outcomes of C2PO
using a chemistry library-based autocorrection applica-
tion in a subsequent step.

This contribution provides insights in what one can
expect when applying the two above-mentioned appli-
cations. 700 permeability optimization campaigns were
launched, where only the peptide side chains were
allowed to be modified. In general, we observed opti-
mization for many of the campaigns, meaning that bad
permeability starting points were optimized to struc-
tures with an estimated permeability above the thresh-
old of —6.0 logP,,,. In the chemical correctness check
step, we identified that a substantial portion of the out-
put structures needed correction. The autocorrection
tool modified those, and we tracked how the optimized
permeability altered upon chemical correction of the
structures (the chemical corrector is not aware of the
initial permeability improvement task). Various scenar-
ios took place, but the most important one was that for
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many campaigns the second step did not counteract the
initial permeability optimization.

At the end of our contribution, we discussed in more detail
the results obtained by informing the reader about the way
to and not to use our model and workflow. Moreover, our
C2PO application has some flexibility in setup, allowing the
users to perform simulations according to their own needs.
We did not pursue the best possible optimization result in
this work and, instead, focused on providing insights into the
basic capabilities of the applications presented. Nevertheless,
we inform about ways of improving the overall performance
of permeability optimization and molecular autocorrection.

Finally, with this work we hope to raise a general interest
in adopting estimator2generative optimizer strategies for
tackling chemical problems, as well as deploying chemistry-
library driven applications for post-correcting molecular
structures generated through ML.
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