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Abstract 

Peptide drug development is currently receiving due attention as a modality between small and large molecules. 
Therapeutic peptides represent an opportunity to achieve high potency, selectivity, and reach intracellular targets. 
A new era in the development of therapeutic peptides emerged with the arrival of cyclic peptides which avoid 
the limitations of parenteral administration via achieving sufficient oral bioavailability. However, improving the mem-
brane permeability of cyclic peptides remains one of the principal bottlenecks. Here, we introduce a deep learn-
ing regression model of cyclic peptide membrane permeability based on publicly available data. The model starts 
with a chemical structure and goes beyond the limited vocabulary language models to generalize to monomers 
beyond the ones in the training dataset. Moreover, we introduce an efficient estimator2generative wrapper to enable 
using the model in direct molecular optimization of membrane permeability via chemical modification. We name our 
application C2PO (Cyclic Peptide Permeability Optimizer). Lastly, we demonstrate how a molecule correction tool can 
be used to limit the presence of unfamiliar chemistry in the generated molecules.

Scientific contribution: We provide an ML-driven optimizer application, named C2PO, that returns structurally modi-
fied cyclic peptides with an improved membrane permeability, one of the pivotal tasks in drug discovery and devel-
opment. C2PO is a first-in-class application for cyclic peptide permeability amelioration, in that it converts a ML model 
into a generative optimizer of chemical structures. Additionally, through demonstration we incentivize the usage 
of an automated post-correction tool with a chemistry reference library to correct strange chemistry outputs 
from C2PO, a known issue for ML-generated chemical structures.
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Introduction
Today, the dominant class of therapeutics are small 
organic molecules [1, 2]. They exhibit many advantages, 
among others, straightforward and low-cost synthesis, 
tunable bioactivity, and good membrane permeabil-
ity and cell uptake [3]. However, due to their small size, 
they may be promiscuous ligands, possibly binding to 
unintended targets causing adverse side effects. Moreo-
ver, their small size makes them inherently suboptimal 
for disrupting large molecule interactions, e.g. protein–
protein interactions [4]. Hypothetically, these drawbacks 
can be overcome by turning to peptide-based therapeu-
tics which, due to their larger size, potentially exhibit a 
broader applicability and display higher selectivity [3]. 
Indeed, peptides have enjoyed increasing attention in the 
last decades, leading to an approximate 6% share in the 
FDA-approved drugs by mid-2022 [1].

An appealing subclass of peptides are cyclic peptides. 
By constraining the conformational flexibility of a pep-
tide chain, the target affinity and selectivity can be fur-
ther improved. Furthermore, cyclisation of the peptide 
structure increases protection against proteolysis, a weak 
point of linear peptide structures [5]. As such, cyclic 
peptides represent a unique class that unlocks the drug-
gability of new targets [6]. Even though they do not com-
ply with the conventional rule-of-five of Lipinski, their 
increased permeability relative to linear peptides can 
be attributed to their chameleonic propensity, i.e., they 
adopt an open conformation when exposed to aqueous 
solutions, while converting to a closed conformation 
when entering hydrophobic environments [7–9]. Unfor-
tunately, cyclisation and the associated chameleonic 
effect is not an infallible solution for all cases of poor cell 
permeability [10, 11].

A wide plethora of synthetic modifications are inves-
tigated and deployed to achieve favorable permeability 
properties [12, 13]. Common strategies include N-meth-
ylation [10, 11], substitution of amide bonds [14, 15], 
induction of steric occlusion through chemical modifi-
cation [16], and alteration of the conformational popu-
lation [17, 18]. However, estimating the effect of certain 
synthetic modifications on cyclic peptide permeability is 
not straightforward. An intermediate solution is to train 
a machine learning (ML) model on known permeabil-
ity data to support decision-making. Recently, Li et  al. 
released the CycPeptMPDB dataset of literature-collected 
permeabilities of cyclic peptides [19]. Since then, various 
contributions have published ML models to evaluate the 
permeability of cyclic peptides [20–27]. Such models can 
be used by medicinal chemists to obtain an indication of 
the cell permeability of envisioned novel peptides.

We herein present an ML-powered application that 
returns, given a starting structure, chemically modified 

cyclic peptides with an improved in-vitro permeability 
(Fig.  1). At the core of our application sits a molecular 
structure optimizer that is controlled by an underlying 
permeability ML model, which we present as estimator-
2generative. As such, we introduce an alternative to the 
more commonly deployed direct generative ML models, 
where the structure-proposer is tied to a pre-trained ML 
model. We have named our model C2PO, an abbrevia-
tion for Cyclic Peptide Permeability Optimizer.

When it comes to optimizing or generating new 
chemical structures using ML, maintaining chemical 
validity often proves challenging, as models are not 
aware of the concept of chemical soundness. Typical 
ways of improving chemical validity of the generated 
molecules include: the post-filtering of incorrect or 
unwanted chemistry and re-iterating generative tasks 
until a satisfied number of generated molecules is col-
lected, or the introduction of rules within the model to 
enforce the output of sane molecules. For the proper 
functioning of these approaches, one needs to explicitly 
define and implement valid chemistry, which is both 
delicate and time-consuming. Moreover, when imposed 
in the forms of restraints within the model itself, inter-
ference with the optimization process will occur. This 
reduction in generative flexibility can result in subop-
timal optimization tasks. We circumvent these issues 
by taking an alternative route and attach a previously 
developed automated molecular correction tool as a 
post-processing step [28].

In the Results section of this work, the general out-
comes of the molecular modification (the first step) and 
subsequent molecular correction (the second step) are 
expounded. This informs the reader about what one 
can expect from applying the proposed strategy. Subse-
quently, we take a deep dive in the Discussion section. In 
summary, our principal objectives are to incentivize the 
usage of the proposed estimator2generative model in all 
types of medicinal chemistry tasks and to showcase the 
elegance of using a subsequent dictionary-based correc-
tion protocol instead of hard-coding valid chemistry or 
post-filtering.

Method
ML estimation model
The target model is dictated to start with the chemical 
structure and to optimize the structure without being 
limited to using, for instance, amino acid vocabulary. 
The ML model of cyclic peptide membrane permeability 
was trained using the public CycPeptMPDB [19] data-
base, pulled on June 1st, 2024. Eighty percent of in total 
7,451 measurements in the dataset were used for train-
ing the model while the remaining entries were equally 
split into a test and a validation set. More information 
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on the presence of multiple permeability entries of the 
same peptide and the dataset split strategy can be con-
sulted in the Supplementary Information (see Additional 
file 1). A Graph Transformers deep learning architecture 
was used due to the reported state-of-the-art perfor-
mance of this class of deep learning (DL) architecture 
across various applications [29]. A depiction of the ML 
estimation model can be consulted in Fig. 2. The model 
architecture follows the framework from GRAPHGPS 
[30] which provides a combination of the local informa-
tion from message-passing with the global information 
from the multi-head attention. The graphs are generated 
starting from the SMILES using RDKit [31]. Random 
walk positional encoding [32] is used to encode the posi-
tional information. The range of the global attention is 
controlled by an exponential decay as proposed in Grad-
former [33]. The code is implemented using Pytorch [34] 
and PyTorch Geometric [35]. More details on the model 
architecture, hyperparameters and training settings are 
presented in the Supplementary Information (see Addi-
tional file 1).

Estimator2generative optimization wrapper
In natural language processing robustness of models is 
often improved when trained using adversarial examples 

[36]. These are examples where small changes in the data 
change the outcome of the model. Instead of trying to 
trick the model to change the outcome, we used these 
techniques to optimize the molecules with respect to a 
desired value of a property of interest (see Fig. 2, middle 
panel, for conceptually understanding the optimization 
stage). We based our optimization routine on the Hot-
Flip algorithm [36]. This algorithm approximates the best 
possible flip of two tokens based on one neural network 
function evaluation (forward pass) and one backward 
pass. The adversarial loss (in our case, the desired loss) 
can be approximated by:

with ydes being the desired value, tdes the unknown 
desired molecule, y the current property value and t 
the current molecule. This loss is then minimized with 
respect to tdes by:

Practically, for our graph model we used the embed-
dings of the atom numbers in the graph encoder as t 
and tdes in Eqs. 1 and 2. We limit the flips to a restricted 
number of possible atom numbers, avoiding the potential 
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Fig. 1  A visualization of the Cyclic Peptide Permeability Optimizer (C2PO). The application accepts a cyclic peptide structure and improves 
the permeability by mutating the chemical structure. C2PO bases its optimizations on a pre-trained machine learning (ML) estimation model. 
ML-driven applications have the tendency to (occasionally) propose strange chemistry. We let a chemical library-based auto-correction tool identify 
on foreign chemistry and subsequent correction, instead of a manual evaluation by experts. The auto-corrector tool used here is the one published 
by Kerstjens and De Winter [28]. The depicted structures are real examples extracted from the case study performed in this contribution (vide infra; 
first campaign in Fig. 4). The model outputs multiple optimized structures. Here the best so-called offspring molecule is depicted (top right). The 
N-S bond in the output compound’s structure might be identified as questionable chemistry. However, the autocorrection application ruled this 
structure to be familiar. The initial compound was selected from the public CycPeptMPDB database(CycPeptMPDB ID: 3109)
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bias in the optimization when the model chooses chemi-
cal elements rarely seen in training. Since flipping atoms 
generally leads to invalid molecules, we only flip once 
instead of allowing multiple flips at once as originally 
described in the HotFlip algorithm [36]. Instead, we use 
one backward pass to flip to the best k atoms at the best k 
positions (see Fig. 2, middle panel, with k = 2 as example). 

The resulting molecules are placed on a priority queue 
based on their desired loss. The desired loss for invalid 
molecules in this iteration is increased by the maximum 
loss of the valid molecules such that invalid molecules are 
placed after the valid molecules on the priority queue for 
each iteration. Next, we try to improve for a given num-
ber of iterations the top l molecules on this queue (see 

Fig. 2  An overview of the inner workings of C2PO (Cyclic Peptide Permeability Optimizer), visualizing the method description in the main text. 
At the heart sits a ML estimation model (top panel), trained on the CycPeptMPDB dataset [19]. Input SMILES are converted to molecular graphs, 
which are steered through a graph transformer model to estimated permeabilities. The trained transformer model is deployed in the optimization 
stage (middle panel). The estimator2generative optimization of a molecule using the permeability ML model of the top (orange box) is depicted 
in the green box using a fictive example. The optimizer retains the graph size, limiting the search space. Therefore, graphs are manipulated 
to either grow or shrink (bottom left). To explore various molecular sizes, C2PO can be operated using parallel optimization tracks (user defined) 
and collects the results from all parallel optimizations in a single pool of offspring molecules (bottom right). All molecular depictions and choices 
of parameters are fictive, merely serving as illustration of the algorithm’s flow
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Fig. 2, middle panel, with l = 2 as example) and add to it 
the newly optimized molecules, like beam search. After 
the iterative procedure (dark blue iteration loop m in 
Fig. 2, middle panel), all the molecules from the optimi-
zation are placed in a new and separate priority queue 
with the Tanimoto similarity to the original compound 
subtracted from the desired loss in increasing order. The 
approach described so far does not allow the molecule to 
grow or shrink.

To broaden the search space of our optimization, we 
manipulated the graph data directly and used simple 
techniques to grow and shrink the graph while staying 
as close as possible to the original graph. Note that this 
may result in graphs that no longer represent correct 
molecules. To grow the graph, we choose a node at posi-
tion i randomly and place its duplicate at position j. The 
node features are identical, and the new node was then 
connected to the same nodes as its original, copying the 
edge features. This generally will lead to invalid mol-
ecules but can be considered as an intermediate step to 
find even better optimizations. To allow for graph shrink-
age, we randomly delete nodes from the graph. Here we 
base ourselves on the index of the graph node. We use 
the simple heuristic that it is likely that two nodes next to 
each other in the list of nodes are connected in the mol-
ecule. Therefore, when we remove a random node from 
the graph, we replace the deleted node in its edges with 
the previous node, in a way collapsing the deleted node 
with the previous node.

Note that the graphs may no longer represent correct 
molecules, but these are given to the optimization rou-
tine to broaden the search space. At the end of the rou-
tine (after the optimization iterations), however, graphs 
will be converted to SMILES, representing the final out-
put of the optimization. For the output chemical struc-
tures to make sense we pass them through a RDKit 
validity check. Invalid molecules are discarded. Chirality 
is lost in the process and outputs will, therefore, not con-
tain stereochemical information.

Case study setup
All permeability values are reported in terms of the log-
arithm of the permeability velocity (logPapp). The val-
ues range between −10 and −4, which is equivalent to 
1.0 × 10–10 and 1.0 × 10–4  cm/s, respectively. From all 
cyclic peptides in CycPeptMPDB, 700 (~ 10%) com-
pounds that were classified as having low permeability 
(logPapp of −6.5 or less), were randomly drawn as starting 
points for the permeability improvement through molec-
ular modification with the above-described optimization 
model. These drafted systems approximately span the 
entire chemical space represented by the CycPeptMPDB 
dataset, as detailed in the Supplementary Information 

(see Additional file  1). The starting point of each cam-
paign is referred to as the parent compound. The model 
is instructed to return a maximum of 20 offspring com-
pounds per campaign, with a desired permeability value 
of -4.5 as objective. It should be noted that the exact, 
absolute value of this threshold is not critical and does 
not have any specific chemical rationale (see Discussion). 
As our model is gradient-based, the desired value merely 
serves to provide the optimizer with a direction, with the 
goal of shifting ‘low’ permeable peptides towards ‘high’ 
permeable ones. Only modifications of the peptide side 
chains were allowed. RDKit was used to identify the atom 
indices constituting the peptide backbone through the 
SMARTS pattern search "[C;X4;H1,H2][CX3](= O)[NX3]
[C;X4;H1,H2][CX3](= O)". The peptide backbone macro-
cycle was preserved by retaining cycle sizes consisting of 
11 atom members or more using RDKit’s GetRingInfo() 
routine. The optimization algorithm was only allowed to 
change existing elements to the chemical elements C, N, 
O, Cl, F, Br, and S. Upon altering the cyclic peptide, the 
model was permitted to return offspring molecules up 
to a net removal or insertion of five atoms. The intrinsic 
optimization parameters k, l, and m (see Fig.  2, middle 
panel) were all set to five. All settings mentioned can be 
changed by the user. The Tanimoto similarity measure 
was used to estimate structural similarity throughout this 
contribution.

Molecule auto‑correction
During the last step in our workflow, a dictionary-based 
molecular auto-correction tool is applied to inquire 
about the validity of a molecule and to subsequently 
correct invalid molecules [28]. The output SMILES for-
mats from the first permeability optimization step are 
fed to the tool. The drug-like molecules of ChEMBL31 
[37] were used as reference to create the dictionary of 
chemical validity. For the creation of said dictionary we 
set the circular atomic environment radius to 1. The mol-
ecule auto-correction algorithm is implemented as a tree 
search, with vertices representing molecules. The input 
molecule serves as the root of the tree. At each iteration 
the tree is built up by selecting a molecule and enumer-
ating some of its analogs through systematic application 
of graph-based perturbations [38]. Which molecules are 
selected for expansion, as well as which analogs are enu-
merated, is governed by a set of policies. We refrained 
from exploring the available types of policies, and per-
formed molecular correction using the default policies 
provided by the developers [28].
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Results
ML estimation model
Underneath the cyclic peptide optimizer sits a trained 
ML estimation permeability engine. Hence, the opti-
mizer’s meaningfulness relies on the quality of the per-
meability estimation when presented with a chemical 
structure. Figure  3 depicts the comparison between the 
true (abscissa) and the estimated permeability (ordi-
nate) for all cyclic peptides contained in CycPeptMPDB 
in separate subplots for the train (80%), validation (10%) 
and test (10%) splits. Visually, the datapoints in the scat-
terplots of Fig.  3 are concentrated around the equality 
diagonal (black line), which is indicative of a meaningful 
ML estimation model. This is reflected in the R2, Pear-
son correlation (r), and the mean average error (MAE) 
values of respectively 0.61, 0.78, and 0.37 for the test set. 
Following a comparative analysis with related studies 
[20–27], detailed in the Supplementary Information (see 
Additional file 1), we conclude to have a state-of-the-art 
model. In this contribution we are mainly concerned with 
improving permeability upon chemical modification, 
and, within this context, utilizing this ML estimation 
model is justified. Finally, certain cyclic peptides were 
assigned a value of −10 for permeability by the authors 
of the CycPeptMPDB work, as the experimental detec-
tion limit did not allow for a proper permeability deter-
mination [19]. We moved this lower bound from −10 to 
−8.5 prior to model training and deployment to have the 
arbitrary set values closer to the other ones. Our estima-
tion model cannot handle those cases properly, as can be 
observed in Fig. 3 as a vertical line at −8.5. Other cases 
of structured datapoints on vertical lines can be observed 
for instance at −7. This is due to decisions made by either 
the original reporters of the experimental values or the 
way the authors of CycPeptMPDB interpreted the results. 
We do not delve deeper into the specific reasons, as we 
estimated its effect to be minimal for our model and case 

study. However, we should note that this has also been 
observed for other experimental datasets, such as the 
binding affinity values reported in ChEMBL [39]. Here, 
we decided to accept the noise that is added as a conse-
quence of retaining these datapoints in the dataset.

Permeability optimization
Now, we turn to the main outcome of this contribution, 
namely improvement of permeability by mutating the 
chemical structure of cyclic peptides, driven by our devel-
oped estimator2generative optimizer. Figures 4 and 5 are 
illustrations of the permeability progressions per indi-
vidual campaign and in property distributions, respec-
tively. In Fig. 4, each vertical line represents a campaign, 
where the parent and offspring molecules are assigned a 
dark and light grey color, respectively. In total, 13,043 off-
spring molecules were produced. Based on the Tanimoto 
similarity, we identified that there are seldom cases (227 
or 1.74%) where the offspring molecule is not changed 
with respect to the starting parent compound. In gen-
eral, most proposed cyclic peptides did exhibit an ame-
liorated permeability (higher logPapp). The violin plots in 
Fig.  5 also display this upward trend when relating the 
offspring with the parent set of compounds. Neverthe-
less, the model does also return cases where optimization 
failed (lower logPapp), albeit these cases are a minority. 
The optimization algorithm tries to find atom flips that 
improve permeability, but there are cases where no or 
only a few better structures are found. In those cases, 
the algorithm does return worse offspring compounds. 
However, improvements in permeability do not always 
translate to successful campaigns. Namely, when analyz-
ing permeability values, one is principally concerned with 
categorizing molecules as low or high permeable, with 
the threshold approximately around logPapp of −6.0 [19, 
40]. A campaign could be considered successful if at least 
one offspring molecule is classified as highly permeable. 

Fig. 3  The true versus ML-estimated permeability for each of the dataset splits CycPeptMPDB. The estimations were performed using our 
estimation model, where eighty percent of the data was used for training and ten percent each for validation and testing
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By using this threshold, we determined that in our case 
study 538 (76.86%) campaigns and 5,389 (42.05%) actual 
offspring molecules can be considered successful. When 
inspecting the offspring violin plot in Fig. 5, the average 
(boxplot) can be found around a LogPapp of −6, and the 
largest density is found towards −5.6.

Besides the permeability property, we also wanted to 
gauge the complexity of the structural changes that were 
introduced in the algorithm. Figures 6 and 7 are provided 
to shed light on this. The two figures are identical, apart 
from the properties loaded as heatmap. Figures 6 and 7 
depict the improved permeability versus the measure of 
structural change, expressed as the Tanimoto similar-
ity between each offspring and parent compound. This 
similarity measure equals 1 for identical molecules. Addi-
tionally, we investigated the permeability optimization 
in light of the starting molecular weight and molecular 
weight changes, and this is detailed in the Supplementary 
Information (see Additional file  1). We do not observe 
any relation between the extent of structural transfor-
mations and the improvement of permeability. The heat-
map in Fig. 6 shows the absolute permeability outcomes 
for each of the offspring peptides, where indeed, a bet-
ter outcome logically relates to a stronger permeability 
jump. Another interesting viewpoint is shown in Fig.  7, 
which focusses on the parents’ absolute permeabilities. 
When deploying an improvement algorithm, it preferably 

behaves in such a way that it recognizes the extent of 
optimization needed and acts accordingly. Imagine a sce-
nario where one starts from a strongly unfavorable per-
meability (e.g., a logPapp of −8.0). The algorithm will have 
to cover a larger value range than a compound that is 
already close to the −6.0 border. The blue points in Fig. 7 
are the unfavorable starting points and are subjected 
to strong permeability changes (a higher permeability 
improvement). Moreover, the model does not necessarily 
achieve this by applying stronger chemical modifications, 
as we mentioned before. This implies that the model can 
identify efficient transformations, and that improvement 
is not a mere consequence of an increased number of 
chemical modifications.

Chemical structure sanity check
To date, it remains a major challenge to develop gener-
ative models that propose correct chemistry, even when 
they are trained on chemical data. Herein, we apply an 
automated molecular correction tool. In the first step, 
it diagnoses foreign chemical features within molecules 
using an underlying chemical reference dictionary. 
When foreign hits are present, a subsequent molecu-
lar correction is performed. The dictionary check 
ruled 2,931 out of the 12,816 generated offspring mol-
ecules as chemically invalid, being a significant portion 
(22.9%) of all the generated offspring compounds. The 

Fig. 4  The permeability values for each individual campaign (vertically oriented). The campaign’s parent and offspring molecules have a red 
and grey color, respectively. The campaigns are sorted according to increasing logPapp value. The chemical structures of the parent and best 
offspring molecule of campaign 1 are visualized in Fig. 1
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downside of our strategy is that an additional chemical 
modification step is undertaken, potentially counteract-
ing the initial permeability optimization task. Figure 8 
tracks the permeability change upon correction. The 
most important observation here is the high and linear 
correlation between pre- and post-correction perme-
ability, and that there is no clear trend between scatter 
points falling below or above the identity diagonal. This 
indicates that the correction process does not systemat-
ically make permeability worse or better. Five scenarios 
manifest:

1)	 the pre-correction offspring’s permeability was suc-
cessfully optimized (above -6.0), and remains opti-
mized after molecular correction (north-eastern 
quadrant, I);

2)	 the pre-correction offspring’s permeability optimi-
zation was not successful, but falls in the desirable 
permeability range upon correction (north-western 
quadrant, II);

3)	 both the pre- and post-corrected molecules fall in the 
low permeability range (south-western quadrant, III);

4)	 the desired permeability exhibited by the offspring 
compound is lost upon molecular correction (south-
eastern quadrant, IV);

5)	 the molecular correction mutates the chemical struc-
ture but returns the parent compound of the cam-
paign.

Cases that fall in the northern quadrants (I and II) are 
considered positive outcomes, whereas the southern 
quadrants represent ultimately (III and IV) failed cases. 
Scenario 1 is the desired scenario, as these campaigns 
display the desired functioning of the two tools. The 
cases in scenario 2 are mere products of coincidence, 
as the correction tool is unaware of the permeability 
property. Scenario 3 cases align with a logical outcome: 
one cannot expect that the second step, merely focused 
on molecular correction, co-improves the permeability. 
Lastly, scenario 4 are cases where the structural correc-
tion counteracts the initial permeability amelioration 

Fig. 5  Violin plots of the permeability values of the 700 parent molecules and the 12,816 offspring molecules. These plots hold boxplot information 
and inform about the value distribution through a kernel density plot
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and is highly undesirable. The number of cases for each 
of five scenarios are 881 (scenario 1), 190 (scenario 2), 
1,468 (scenario 3), 280 (scenario 4), and 112 (scenario 
5). For the two eastern quadrants, most cases fall into 
the desired quadrant I. However, one should keep in 
mind that negative scenarios because of attaching the 
two tools together do occur (scenario 4). Lastly, Fig. 8 
portrays the similarity heatmap between the structure 
of the corrected offspring molecule and the campaign’s 
parent compound. No correlation between this similar-
ity and the quadrants are observed.

Discussion
From the presented results, we can conclude that the 
overall framework herein performs as desired. The model 
does propose permeability-optimized cyclic peptides for 
most of the cases. It behaves in line with such a model, 
namely it suggests structure efficient ways of modify-
ing cyclic peptides towards improving permeabilities 

and suggests potential improvement paths according to 
the extent of required optimization (strong permeability 
improvement for strongly unfavorable starting points). 
Then, most of the offspring cases, submitted to auto-
mated molecular correction, do not see the optimized 
permeability annulled. This workflow, in its current form, 
can be deployed to assist in improving permeabilities of 
cyclic peptides. It should be emphasized that this con-
tribution did not pursue obtaining as many successful 
optimization campaigns as possible. It is up to the user 
to deploy this method to accomplish specific objectives.

Our core estimation model is not a perfect perme-
ability value estimator, and caution should be practiced 
when interpreting the results. We demonstrated that our 
estimation model performs in line with related models, 
without pushing the limit to outperform them. Our cur-
rent model can potentially be ameliorated by adopting 
a multimodal approach, i.e., feeding the ML model with 
different data structures and molecular information. This 

Fig. 6  The Tanimoto similarity between the offspring and parent molecule versus the permeability change. The heatmap is colored according 
to the absolute permeability value of the offspring molecules
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is beyond the scope of the present work. In addition, we 
tried to conduct an independent validation of our per-
meability estimator model in case of the so-called opti-
mized offspring. This validation failed, as expounded in 
the Supplementary Information (see Additional file  1). 
The advised manner to consider the absolute values out-
putted is to use them to categorizing molecules in low or 
high permeability classes [40]. Here, we set the thresh-
old at −6.0 logPapp for pragmatic reasons. We envision 
our methods to be used by chemists as an idea generator. 
When presented with a structure, the model suggests a 
set of optimized molecules. Those that surpass the pro-
visioned threshold may be valid options, and, based on 
the exact output permeability value, hints are provided 
as to rankings within this set of potentially valid options. 
Again, be aware that this ranking is fallible.

We understand that our case study does not necessar-
ily reflect the objectives of future users. Here, only side 
chains are suggested by the algorithm and modifications 
are allowed to increase or reduce the number of atoms 
by five (see Methodology). These factors can be changed 

according to the desires of the user. Firstly, our model 
supports flexibility as to instructing the model in retain-
ing and/or modifying certain types or specific parts of 
starting molecules, for instance, allowing changes in the 
backbone of peptides or to keep the principal parts of the 
cyclic peptide for binding to the target. For instance, it 
is possible for cyclic moieties (cyclic systems in the side 
chains, disulfide-cyclized peptides, etc.) to be disrupted 
in our presented case study. If desired, these moieties 
can be protected through different settings. Secondly, the 
pool of chemical elements the model can use to replace 
existing atoms can be specified, although one should be 
aware that the underlying estimation model is trained on 
compounds containing specific chemical elements. For 
example, one can opt to allow carbon-atom insertions 
only. Thirdly, often times generated molecules remain 
highly like the starting point. The net atom insertions 
or deletions can be specified. Fourthly, the model can be 
retrained using different data if desired, in case the user 
has a custom dataset or when an extended or alternative 
dataset is published in the future. Lastly, it is advised that 

Fig. 7  The Tanimoto similarity between the offspring and parent molecule versus the permeability change. The heatmap is colored according 
to the absolute permeability value of the parent molecules
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the optimization parameters k, l, and m are altered to 
satisfy the needs of the study. In our case, we obtained a 
decent result with an ad hoc choice of these parameters, 
and did not systematically probe the optimization perfor-
mance versus the values of parameters k, l, and m.

Then, consider the second step in our workflow: the 
molecular correction powered by a chemical validity dic-
tionary. In most cases the post-correction of successfully 
optimized offspring compounds (from step 1 in the work-
flow) preserves the desired permeability. However, there 
are scenarios where permeability worsens upon chemical 
correction, causing them to return to the low permeabil-
ity category. Nevertheless, post-applying the auto-correc-
tion tool is appealing due to its speed (no development 
needed, quick execution upon inquiry) and lack of inter-
ference with the optimization engine of the model. The 
flip of the coin of this black-box tool is that one relies 

heavily on the database used within the dictionary. Here 
we utilized the ChEMBL dataset as in the original study 
of the molecular auto-correction tool, which is meaning-
ful chemistry in our opinion. The user has the option to 
customize the underlying dictionary by feeding it with a 
dataset of own selection [28].

On a more technical note, the current two independ-
ent steps of molecular optimization and correction can 
be interfaced more deeply. As both software packages are 
capable of manipulating RDKit mol objects, it becomes 
possible to directly send compounds as mol objects from 
C2PO to the auto-correction tool. This means that an 
intermediate rendering and validity check by RDKit is 
skipped (transferring full responsibility for structural 
validity to the molecular auto-correction tool), poten-
tially leading to a higher throughput of the optimization 
to the correction tool and a better overall result. An even 

Fig. 8  The permeability value pre- and post-correction with the molecular auto-correction method. The heatmap is colored according 
to the Tanimoto similarity between the corrected and the parent compound
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deeper connection between the two applications can be 
established by defining the ML permeability estimation 
model as an objective function for setting up an explicit 
objective preservation selection policy within the auto-
correction tool. As such, the algorithm will be simul-
taneously optimizing the permeability objective and 
chemical correctness. The downside of any of the integra-
tions mentioned is that the two applications are strictly 
tied together (no intermediate SMILES outputs), remov-
ing their independent functioning and deployment. Here 
we opted to keep the two steps separate, but it is impor-
tant to be aware of the possibility of linking tools together 
through different data formats, as is the case here.

Finally, for researchers that will use the C2PO frame-
work to tackle different optimization questions, including 
other chemistry and molecular properties, it is advised 
to play around with all the settings to reach an adequate 
performance. The parameters we utilized here are not 
necessarily transferable to other scientific questions.

Conclusion
Generally, cyclic peptides lack adequate membrane 
permeability to be developed into medicines. We pro-
pose C2PO (Cyclic Peptide Permeability Optimizer), an 
application that improves permeability by modifying the 
chemical structure of a given cyclic peptide. C2PO is 
ML-driven, trained on the experimental CycPeptMPDB 
dataset, and can be categorized in the estimator2genera-
tive optimization paradigm (Fig. 2). However, ML-based 
applications that output chemical structures, as is the 
case here, have the tendency of (occasionally) propos-
ing strange chemistry. This is attributable to the loss of 
chemical knowledge, although it is generally considered 
to be implicitly learned. Therefore, we opted for checking 
and correcting (where needed) the outcomes of C2PO 
using a chemistry library-based autocorrection applica-
tion in a subsequent step.

This contribution provides insights in what one can 
expect when applying the two above-mentioned appli-
cations. 700 permeability optimization campaigns were 
launched, where only the peptide side chains were 
allowed to be modified. In general, we observed opti-
mization for many of the campaigns, meaning that bad 
permeability starting points were optimized to struc-
tures with an estimated permeability above the thresh-
old of −6.0 logPapp. In the chemical correctness check 
step, we identified that a substantial portion of the out-
put structures needed correction. The autocorrection 
tool modified those, and we tracked how the optimized 
permeability altered upon chemical correction of the 
structures (the chemical corrector is not aware of the 
initial permeability improvement task). Various scenar-
ios took place, but the most important one was that for 

many campaigns the second step did not counteract the 
initial permeability optimization.

At the end of our contribution, we discussed in more detail 
the results obtained by informing the reader about the way 
to and not to use our model and workflow. Moreover, our 
C2PO application has some flexibility in setup, allowing the 
users to perform simulations according to their own needs. 
We did not pursue the best possible optimization result in 
this work and, instead, focused on providing insights into the 
basic capabilities of the applications presented. Nevertheless, 
we inform about ways of improving the overall performance 
of permeability optimization and molecular autocorrection.

Finally, with this work we hope to raise a general interest 
in adopting estimator2generative optimizer strategies for 
tackling chemical problems, as well as deploying chemistry-
library driven applications for post-correcting molecular 
structures generated through ML.
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