
Vol.:(0123456789)

Journal of Computer-Aided Molecular Design (2024) 38:10
https://doi.org/10.1007/s10822-024-00549-1

Molecule auto‑correction to facilitate molecular design

Alan Kerstjens1 · Hans De Winter1

Received: 6 November 2023 / Accepted: 11 January 2024
© The Author(s) 2024

Abstract
Ensuring that computationally designed molecules are chemically reasonable is at best cumbersome. We present a molecule
correction algorithm that morphs invalid molecular graphs into structurally related valid analogs. The algorithm is imple-
mented as a tree search, guided by a set of policies to minimize its cost. We showcase how the algorithm can be applied to
molecular design, either as a post-processing step or as an integral part of molecule generators.

Graphical abstract

Keywords Molecular design · Auto-correct · Tree search · Policy · Perturbation

Introduction

Computational drug discovery is a challenging task. Not
only must a computational chemist strive to design mole-
cules with potent predicted biological activity, but they must
also ensure that the designed molecules are “reasonable”, to

the extent that they are chemically valid, synthesizable, and
overall drug-like. Experienced chemists will know a prob-
lematic molecule when they see one [1, 2]. Unfortunately,
virtual molecule generators, lacking chemical intuition, tend
to propose molecules that are chemically unstable and reac-
tive, difficult to synthesize, conformationally strained or
exhibit impossible electronic configurations [3–5] (Fig. 1).

Medicinal chemistry efforts are focused on designing
chemically attractive molecules, which wind up recorded in
chemical databases [9–11]. The “similar structure, similar
property” principle, which is the cornerstone of molecular

 * Hans De Winter
 hans.dewinter@uantwerpen.be

1 Laboratory of Medicinal Chemistry, Department
of Pharmaceutical Sciences, University of Antwerp,
Universiteitslaan 1, 2610 Wilrijk, Belgium

http://crossmark.crossref.org/dialog/?doi=10.1007/s10822-024-00549-1&domain=pdf

 Journal of Computer-Aided Molecular Design (2024) 38:10 10 Page 2 of 18

design, claims that similar molecules exhibit similar proper-
ties [12, 13]. It follows that if a query molecule resembles
known appealing molecules it is likely to be appealing itself,
with the contrary being the case when it is dissimilar.

The similarity principle can be exploited to reduce the
likelihood of designing uncomely molecules. Indeed, most
molecular design algorithms rely on it in some shape or
form. A historically popular approach has been to construct
chemicals as combinations of smaller molecular fragments,
either systematically extracted from reference molecules
[14–18] or sourced from commercial reagent libraries [19,
20]. Fragment combination is governed by rules that range
in chemical sophistication from knowledge-based bonding
[15–17] to simulated chemical reactions [18–20]. More
recent research efforts have focused on generative models,
that is, machine learning models trained to learn chemical
distributions and sample molecular representations from
them. The most popular molecular representation for gen-
erative models are text-based line notations [21–23]. Models

can learn the syntax and semantics of said line notations,
allowing them to translate back and forth between discrete
textual and continuous numerical molecular representations
[7, 24, 25] or to generate strings character-by-character
conditioning the character probability distribution on previ-
ously sampled characters [8, 26, 27]. Alternative approaches
consider chemical appeal as explicit parameters in a multi-
objective optimization setting [28, 29], but even then the
similarity principle frequently makes an appearance as the
basis of chemical desirability objective functions [30–32].

The aforementioned strategies succeed at reducing the
number of deficient generated molecules to varying degrees,
but they are not infallible [3, 5]. Many resources are being
channeled into further developing techniques to generate
chemically desirable molecules. An unfortunate casualty
of this focused effort is that research into optimization and
search strategies has been stalled.

Herein we describe an algorithm that “corrects” mole-
cules. Our intention is twofold. Firstly, we envision the tool

Fig. 1 Examples of objectionable molecules generated by diverse
molecule generators during a JAK2 inhibitor design exercise, as
reported by [4]. A was generated by a graph-based genetic algorithm

[6], B was generated by a particle swarm optimizer in an auto-
encoder latent space [7] and C was generated by a SMILES-based
recurrent neural network [8]

Journal of Computer-Aided Molecular Design (2024) 38:10 Page 3 of 18 10

being used to address molecule quality issues that were not
caught or covered by a third-party molecule generator. Sec-
ondly, and perhaps most importantly, we hope that it will
enable researchers to divest some of their attention from
avoiding non-sense molecule generation to other aspects of
molecular design.

The algorithm describes a query molecule with local
structural features and compares said features to those found
in reference desirable molecules. If the query molecule
possesses features that are absent or rare in the reference
molecules, the features are deemed “foreign” or incorrect.
Otherwise, they are deemed “familiar” or correct. Through
a tree search algorithm, we locally modify foreign features
until they are familiar enough. Certain heuristics are used to
prioritize modifications that are most likely to yield familiar
features. One can draw an analogy between our algorithm
and a primitive spell checker, where chemical features are
the equivalent of words. Each word is checked against a
dictionary of known words. If a word is not present, it is
deemed incorrect and a heuristic suggests similar correct
words.

Methods

Molecular characterization

To identify if a molecule is foreign, and if so, what parts
are foreign, we defined some simple localized molecular
descriptors. Atoms were characterized with atom keys. Atom
keys are integer tuples comprising an atom’s degree (D) (i.e.
its number of adjacent atoms), valence (V), atomic number
(Z), formal charge (Q) and number of hydrogens (H). These
properties were chosen because they are largely independ-
ent from the atom’s surrounding chemical environment. To
avoid cyclic dependencies between properties, in this work
valence is defined as the sum of an atom’s bonds’ orders,
without considering the atom’s formal charge. The order of
the atom key’s properties is relevant. We ordered the prop-
erties by perceived decreasing significance or importance.
For example, we assume that a change in degree, and there-
fore topology, is more disruptive to a molecule’s structure
and properties than a change in atomic number. Bonds were
characterized as a tuple of the bonded atoms’ keys (AK) and
an integer representing the bond’s type (B), which can be
thought of as the bond’s order (Fig. 2).

We also defined partial keys of the atom and bond keys.
Partial atom keys were constructed by taking the first j most
significant properties of the atom key, with j∈ [1, k-1],
where k is the number of properties in an atom key. Conse-
quently, partial key j contains all partial keys with a lower j.
The same procedure was applied to bond keys but with the
range j ∈ [2, k-1]. This yields a total of four partial atom keys

and one partial bond key (Fig. 2). Partial keys can be sorted
lexicographically, enabling fast key-value store searches.

Lastly, circular atomic environments were defined for
all atoms in the molecules. A circular atomic environment
comprises a central atom and all surrounding atoms within a
given topological distance termed the environment’s radius
r. The resulting atomic environment was hashed to an inte-
ger using the Morgan algorithm [33, 34], and said hash
was taken as the environment key or unique identifier of
the environment. As such, these identifiers are conceptually
equivalent to ECFP fingerprint features [34]. The Morgan
algorithm requires initial atom identifiers or “invariants”.
There is some flexibility in the selection of atomic invari-
ants. By default we use the atom keys’ hashes as invariants,
mimicking the Daylight atomic invariants [35]. However one
could incorporate other information such as ring member-
ship [34, 36].

Reference dictionary

In this work a subset of ChEMBL31 [10] was chosen as the
reference library of drug-like molecules. Only small organic
molecules were retained. Large biomolecules, natural prod-
ucts and polymers were excluded. For the remaining mol-
ecules the unsalted and non-ionized “parent form” was cho-
sen. Molecules in the reference library were characterized
using the aforementioned descriptor keys, and the frequency
of each key recorded in a “chemical dictionary”. We gener-
ated two dictionaries using environment radii of 1 and 2
respectively. If a key’s frequency surpasses a user-specified
threshold (by default 0) it is deemed familiar, and otherwise
it is deemed foreign. Owing to the way in which keys are
defined, simpler keys are contained by more complex keys.
For example, environment keys contain bond keys and bond

Fig. 2 Partial atom and bond key pyramid. Higher order keys encom-
pass lower order keys. The (D, V, Z, Q, H) key constitutes the atom
key AK, and (AK1, AK2, B) constitutes the bond key

 Journal of Computer-Aided Molecular Design (2024) 38:10 10 Page 4 of 18

keys contain atom keys (Fig. 2). This defines unidirectional
dependency relationships between them, meaning that if a
key is foreign all dependent keys containing it must also be
foreign. The reverse is not necessarily true.

Tree search algorithm

The molecule correction algorithm was implemented as a
tree search. An incorrect input molecule serves as the root
of the tree. With each iteration a molecule or vertex within
the tree is selected and partially expanded. Expansion in this
context means enumeration of topologically similar neigh-
boring molecules, and establishment of a parental relation-
ship between the selected predecessor and its neighboring
successors. Expansions were performed using the graph-
based molecule perturbation library Molpert [36]. Pertur-
bations performed by the library include atom- and bond
invariant changes and atom/bond insertions/deletions. To
expedite the correction process molecules are sanitized (as
described in [36]) after each perturbation by default, but
this behavior can be disabled. Molpert enables the system-
atic enumeration of a molecule’s neighbors. Neighbors are
enumerated lazily. The enumeration order is optimized to
maximize the likelihood of finding a correct molecule with
the smallest number of expansions.

As with any tree search algorithm, the search is guided
by a search strategy or policy that dictates how the tree is
expanded with each iteration. For our tree search we distin-
guish two different types of policies. One policy, which we
call the selection policy, selects which vertex to expand next.
The second policy, termed the expansion policy, determines
how the selected vertex is expanded.

Selection policy

To guide the search towards familiar molecules we define the
concept of familiarity. Every time a vertex is added to the
tree it is featurized into atom, bond, and environment keys.
Said keys are classified into foreign and familiar by looking
them up in the chemical dictionary. Familiarity is calculated
as a function of the total number of keys n (Eq. 1) and the
number of familiar keys nf (Eq. 2).

In Eq. 1 na, nb and ne denote the total number of atom,
bond, and environment keys of a given molecule respec-
tively, whereas in Eq. 2 nf

a, nf
b and nf

e denote their familiar
counterparts.

(1)n = na + nb + ne

(2)nf = nf
a
+ n

f

b
+ nf

e

We employ two alternative definitions of familiarity: f1
(Eq. 3) and f2 (Eq. 4). Both range between 0 and 1, with 1
indicating a familiar or correct molecule, and can mostly be
used interchangeably. f1 can be interpreted as a similarity
coefficient between a query molecule and some unknown
correct molecule. Conversely, 1—f1 can be interpreted as
the distance to a correct molecule. f1 is therefore well suited
for estimating how close to a solution a given molecule is. f2
provides weaker theoretical guarantees as a similarity coef-
ficient, for its lower boundary is dependent on the molecule’s
size. f1’s drawback is that it can be maximized trivially by
incrementing the numerator and denominator by the same
amount, as occurs when adding new familiar environments
(e.g. alkane carbons). f2 cannot be exploited in the same way,
and is better suited as an optimization target.

Different selection policies were explored. In all cases
the selection is limited to foreign molecules that have
not been fully expanded yet. As baselines we evaluated
Breadth-First Search (BFS), where the shallowest vertices
are expanded first, and greedy familiarity selection, where
the vertices with the highest f2 familiarity are expanded first.
These correspond to exploration-only and exploitation-only
approaches respectively (Fig. 3). Note that a deep BFS is
computationally intractable since the branching factor of
chemical space is very large (Figure S1, Additional file 1).

There are many correct molecules and many paths lead-
ing to them from the input molecule. We would prefer
finding the correct molecule w that is most closely related
to the input or root molecule u, as according to the simi-
lar property principle it is the most likely to preserve the
properties of the input molecule. The distance between
the input molecule u and another molecule v of the tree is
measured as the ECFP4 Tanimoto distance d(u,v) between
both. We chose this fingerprint and distance metric combi-
nation because they have been shown to be good predictors
of activity preservation [37–39].

Some policies to favor shallow tree searches and bet-
ter balance exploration and exploitation were devised
(Fig. 3). The naivest one is to greedily select vertices with
the highest f1/d(u,v) ratio. More sophisticated policies are
described below.

Upper confidence bounds applied to trees One can esti-
mate how close a vertex is to a yet to be discovered cor-
rect molecule using the familiarity metric. However, it is
not always true that the vertex with the highest famili-

(3)f1 =
nf

n

(4)f2 =
1

n − nf + 1

Journal of Computer-Aided Molecular Design (2024) 38:10 Page 5 of 18 10

arity is involved in the shortest path to the closest cor-
rect molecule. The values (i.e. familiarities) of a parent
vertex’s children follow an a priori unknown distribution.
We can get better estimates of the expected child value
by sampling or generating more children. As more sam-
ples become available the estimate trends towards the true
value. Given limited computational resources one must
choose between exploring vertices with uncertain distri-
butions or exploiting vertices with the most promising
distributions. This is known as a bandit problem, and the
Upper Confidence Bound (UCB) strategy can be applied
to tackle it [40]. UCB applied to Tree searches (UCT) dic-
tates that at each iteration one should expand the vertex
with the highest upper confidence interval bound [41].
In other words, one should expand the vertex for which
the potential upside is maximized. Mathematically, this
means expanding the vertex v maximizing Eq. 5.

In Eq. 5 f1v is the average f1 familiarity of v’s children,
nv is the number of times v was expanded, Nv is the number
of times v’s parent was expanded. The first term of Eq. 5
is exploitative and the second term is explorative. c is a
coefficient balancing between exploitation and exploration.
In this work we explored c values of ½, 1,

√
2 and 2.

UCT is frequently discussed in relation to Monte Carlo
Tree Search (MCTS). The difference between a plain tree
search and MCTS is that in the former the value of a vertex
is given by a heuristic function (in our case the familiar-
ity) whereas in the latter the value of a vertex is estimated
through means of random simulations or “rollouts”. We
want to clarify that our tree search is not a MCTS despite
using the UCT policy, as we did not believe random

(5)UCB1 = f1v + c

√
ln
(
Nv

)

nv

simulations would produce significantly better value esti-
mates than the familiarity heuristic and wanted to keep
resource usage to a minimum.

A‑star The A* (pronounced A-star) search algorithm is a
path finding algorithm suitable for finding close to opti-
mal shortest paths in a graph within reasonable amounts
of time [42]. It selects for exploration/expansion the ver-
tex v for which Eq. 6 is minimized.

In Eq. 6 m(v) is the distance traversed to reach v. In our
case m(v) is the topological distance between vertex v and
the root vertex u, that is, m(v) = d(u,v). h(v) is a heuristic
estimate of the distance between v and an end point w, in
our case a correct molecule. In other words, h(v) ~ d(v,w).
An obvious heuristic candidate is h(v) = 1 – f1(v) (Eq. 7).

d(v,w) is a Tanimoto distance, which is the complement
of the Tanimoto similarity or Jaccard index. If V and W
denote the feature set of molecules v and w, their Jaccard
index J(v,w) is calculated according to Eq. 8.

f1(v) is a similarity index measuring the similarity to some
unknown correct molecule w. While not equivalent to the
Jaccard index, it is related to it. If W denotes the feature set
of this hypothetical correct molecule, f1(v) can be rewritten
as shown in Eq. 9.

(6)g(v) = m(v) + h(v)

(7)g(v) = d(u, v) + 1 − f1(v)

(8)

J(v,w) = 1 − d(v,w) =
|V ∩W|
|V ∪W|

=
|V ∩W|

|V| + |W| − |V ∩W|

Fig. 3 Different types of selection policies. Orange vertices rep-
resent visited vertices. The goal is to find the optimal green vertex
while minimizing the number of visited vertices. Greedy search visits
very few vertices but may miss the goal vertex. Breadth-first search is

guaranteed to find the goal vertex but visits many other vertices in the
process. An ideal selection policy balances exploration and exploita-
tion

 Journal of Computer-Aided Molecular Design (2024) 38:10 10 Page 6 of 18

If f1(v) were calculated using as keys solely ECFP fea-
tures Eq. 8 and Eq. 9 would differ only in their denomina-
tor. It is clear that |V| + |W| − |V ∩W| ≥ |V| . Therefore,
1 – d(v,w) ≤ f1(v), or equivalently 1 – f1(v) ≤ d(v,w), which
would make 1 – f1(v) an admissible heuristic. Moreover,
since Jaccard distances are known to satisfy the triangle
inequality [43], that is, d(u,w) ≤ d(u,v) + d(v,w), the heuris-
tic would also be consistent. Using a consistent heuristic
guarantees that the algorithm will find the optimal solution
given enough time. We included additional terms in f1(v)
besides the environment keys as we believe this additional
granularity can provide finer guidance to the tree search.
Consequently 1 – f1(v) as described in Eq. 3 is theoretically
not an admissible heuristic. Nonetheless in practice it very
rarely overestimates the d(v,w) distance (Fig. 4).

Multiple linear regression distance prediction A* algorithm
was devised for path finding and searches for the shortest
path between two vertices. We are interested in finding the
closest goal vertex, that is, minimizing the distance to a goal
vertex “as the crow flies”. Both distances are not equivalent
(Fig. 5).

To minimize d(u,w) we developed a policy that selects the
vertex for which the predicted d(u,w) is minimal. We wanted
to predict d(u,w) as a function of d(u,v) and f1(v), which
are both known for any vertex. To study the relationships
between these metrics we randomly perturbed a sample of
 103 molecules from ChEMBL [10] by applying between 1
and 10 perturbations to each of them using Molpert [36]
for a total of 104 perturbed and likely incorrect molecules.
We then attempted to correct these molecules with BFS as
selection policy, which, given sufficient resources, guaran-
tees to find the closest correct molecule. A dictionary con-
taining chemical environments of radius 2 was used. Once
a correct molecule had been found the search was allowed

(9)f1(v) =
|V ∩W|
|V|

to continue until the whole tree level was visited. The maxi-
mum tree size was limited to 105. Of the 10,000 structures,
1,573 molecules were successfully corrected within these
resource constraints, with an average search depth of 2.4
edges. For each vertex along the shortest path between the
corrected molecule and the root vertex we measured d(u,v),
f1(v) and d(u,w) for a total of 3,773 data points which we
took as training data. A Multiple Linear Regression (MLR)
model was fit on this data (Eq. 10), resulting in a model with
a Root Mean Squared Error (RMSE) of 0.135 (Fig. 6). As a
control we also built the null model g(v) =

−

d(u,w)= 0.383 ,
with an RMSE of 0.159. Constants can be quite predictive
when the response variable has a narrow range. Since our
training data is comprised of shallow searches the null model
appears unusually predictive. However, constants cannot
extrapolate by nature, and therefore the null model won’t be
predictive for deeper searches. The practical shortcomings
of the null model will be showcased later.

(10)g(v) = 0.42 ∙ d(u, v) − 0.91 ∙ f1(v) + 1.18

Fig. 4 Relationships between d(u,v), d(v,w), d(u,w) and 1—f1(v). The
two leftmost panels show that in practice 1—f1(v) is an almost admis-
sible and consistent heuristic respectively. The rightmost panel is vis-

ual proof of Jaccard distances obeying the triangle inequality. Note
that the correlation between d(u,v) + d(v,w) and d(u,w) is very high,
which is typical of hyper dimensional spaces such as chemical space

Fig. 5 Difference between path distance (d(u,v) + d(v,w)) and straight
distance (d(u,w))

Journal of Computer-Aided Molecular Design (2024) 38:10 Page 7 of 18 10

Explicit objective preservation The above-described selec-
tion policies try to find correct molecules that are structur-
ally closely related to the input molecule. The primary rea-
son for doing so is that structurally similar molecules are
believed to have similar properties [12, 13]. Yet this is not
always the case [44, 45]. Two molecules may share a large
common substructure and differ in a single atom. While the
overall structural similarity between them may be large, if
this distinctive atom is key to the molecule’s activity their
properties may differ significantly.

Given an objective function o(v) that evaluates a ver-
tex v’s property of interest we can explicitly guide the tree
search into preserving this objective as opposed to relying
implicitly on the similar property principle [12]. This helps
tackle the cases where said principle breaks down. A simple
way to do so is selecting for expansion the vertex v for which
Eq. 11 is maximal. Note that the objectives are multiplied as
opposed to being summed to prevent the search algorithm
from sacrificing one objective in favor of the other.

Expansion policy

A molecule is expanded by applying a perturbation to a copy
of itself. Perturbations that are most likely to make the mol-
ecule familiar are applied first. Foreign molecular keys are
identified and ordered according to their significance. Iden-
tifying the most significant foreign key serves as a way of
identifying the most pressing problem a molecule has. The
location of the problem is given by the location of the key,
which is either an atom or a bond. It is this atom or bond that
will be targeted by a perturbation.

When it comes to foreign atom and bond keys it is pos-
sible to identify not only the location but also the nature

(11)g(v) = f1(v) ∙ o(v)

of the problem. Partial keys build up on each other by pro-
gressively adding properties. Since more significant keys
are contained by the less significant ones the latter cannot
be familiar if the former are not either. The property dif-
ferentiating the most significant foreign partial key from its
familiar predecessor partial key is responsible for the lat-
ter being foreign. For example, the most significant foreign
partial atom key may be DVZ = (4, 6, 6), corresponding
to a hexavalent carbon. Its predecessor key DV = (4, 6) is
necessarily the least significant familiar key. We can then
conclude that the atomic number (Z) is not compatible with
the atom’s degree and valence. Since we deem the atomic
number to be less significant than the degree or valence, we
identify the atomic number as the culprit for the atom key
being foreign, meaning perturbations modifying the atomic
number will be prioritized.

The predecessor key can also be used to access the chemi-
cal dictionary and retrieve acceptable property values for the
successor key. These values are sorted according to their fre-
quency in reference molecules in descending order, meaning
that the most frequent values are tried first. In the example
above we can use the DV key to retrieve elements compat-
ible with an atom of degree 4 and valence 6, which might
be sulfur (Z = 16) and selenium (Z = 34). Sulfur is more fre-
quent than selenium, so a perturbation replacing the carbon
with sulfur would be prioritized.

Choosing which perturbations to apply to correct Z, Q,
H or B is obvious as each of these properties has a corre-
sponding perturbation to change its value. Correcting other
properties and keys is less trivial. D is corrected by deleting
bonds associated with the atom or deleting adjacent atoms.
Depending on the dictionary it may also be possible to cor-
rect it by inserting more bonds or atoms, but this is disabled
by default, as for organic molecules degrees higher than 6
are exceedingly rare. V is preferably corrected by changing
the bond types (i.e. bond orders) of bonds associated with

Fig. 6 MLR model fit to training data. The two leftmost panels show the correlation between each of the model’s parameters and the training
data/predictions separately, while the rightmost panel aggregates the effects of both parameters

 Journal of Computer-Aided Molecular Design (2024) 38:10 10 Page 8 of 18

the atom. If this does not succeed it may also be corrected
by modifying the topology of the molecule, in the same way
one would correct D.

Two atom keys AK may be familiar separately, but their
combination in a bond key AK1AK2 may be foreign. If
the AK1AK2 partial key is foreign one or both atom keys
must be changed. Perturbation types can be ordered by
significance similarly to how molecular keys are ordered
by significance. The lower the significance of a perturba-
tion the less it will disrupt the molecule when applied.
The perturbation significance order matches the atom
property significance order (Fig. 2), being from least to
most significant as follows: number of hydrogen changes,
formal charge changes, atomic number changes, bond type
changes, bond deletions, atom deletions, bond insertions
and atom insertions. Less significant perturbations are
applied first to disrupt the molecule as little as possible.
While deletions do not necessarily disrupt the molecule
less than insertions, they typically simplify the molecule.
Simple molecules are more likely to be familiar, which is
why deletions are prioritized over insertions.

Once all atom and bond keys have been corrected the
molecule may still possess foreign atomic environments.
Recall that atomic environments are characterized solely
by their hash, meaning little information about what makes
them foreign is available. Atomic environments overlap,
in the sense that the same atom or bond may be a part of
multiple environments simultaneously. Knowing the exact
boundaries of atomic environments, it is possible to cal-
culate in how many environments a given atom or bond
participates (Fig. 7). We calculate the “foreign environ-
ment membership” of atoms and bonds, that is the number
of foreign environments they are involved in. Atoms and
bonds for which this number is highest are prioritized by
perturbations, under the assumption that since they partici-
pate in many foreign environments, they are likely to be a
culprit for the environments being foreign. Ties are broken

with the atom- and bond keys’ frequencies, prioritizing
least frequent keys. Once a target has been acquired per-
turbations are executed in order of increasing significance,
just like for bond keys.

Constraints

Our molecule auto-correction implementation was devel-
oped using the graph-based molecule perturbation library
Molpert [36]. One of Molpert’s features is the support of
user-specified arbitrary constraints perturbed molecules
ought to fulfill. This functionality is inherited by the auto-
correct implementation, providing the user with fine grained
control over the output molecules. Among other things, this
allows the user to define properties and/or parts of the mole-
cule that should not be modified by the correction algorithm.

Benchmark

A random sample of 103 molecules from ChEMBL31 [10]
was taken. Molpert [36] was used to “break” these molecules
by sequentially applying 10 random perturbations to each
molecule, resulting in a series of 10 perturbed and likely
incorrect molecules. In total 104 perturbed molecules were
generated. These molecules were sorted by the number of
perturbations that gave rise to them. On average, as more
random perturbations are applied to a molecule, more for-
eign keys are generated, decreasing its familiarity. We then
attempted to correct these perturbed molecules with our
algorithm using the different selection policies described
above. A maximum tree depth of 25 and tree size of 25,000
molecules were imposed. A chemical dictionary of circular
environments of radius 2 was used for this purpose. The
output molecule as well as its familiarity and similarity to
the input molecule were recorded. The familiarity provides
some measure of how “correct” molecules are. Nonetheless,

Fig. 7 Foreign atomic environ-
ments and their overlap. The
central unobtainium atom
(Uo) is foreign. All atomic
environments it is a part of are
necessarily foreign too. Foreign
circular atomic environments of
radius 1 are highlighted in pink.
The bottom molecule labels
each atom and bond based on
how many foreign environments
they are involved in. The Uo
atom is involved in all foreign
environments, making it a likely
culprit for the environments
being foreign

Journal of Computer-Aided Molecular Design (2024) 38:10 Page 9 of 18 10

to better contextualize the quality of the generated molecules
we also measured their SAScore [30] and ran retrosynthetic
analysis on them with AiZynthFinder [46] using the ZINC
[11] reactants stock and United States Patent and Trade-
mark Office-derived reaction template policy provided by
the authors. SAScores were calculated using ChEMBL31
[10] as reference chemistry. Molecules were sanitized prior
to calculating their properties.

We investigated two scenarios of how molecule correc-
tion may be applied in molecular design (Fig. 8). In both
cases we took a previously published evolutionary algorithm
capable of (1) designing molecules without any regard for
chemical validity and (2) designing molecules fulfilling
specific structural requirements [17, 36]. The algorithm
was tasked with designing high-scoring molecules in the
goal-directed GuacaMol benchmark suite, consisting of 20
ligand-based benchmarks [3]. As a first scenario (Fig. 8A)
molecules designed without constraints by the algorithm
were subjected to auto-correction as a post-processing step
using different selection policies, a maximum tree depth
of 25 and a maximum tree size of 25,000. For our second
scenario (Fig. 8B), we injected the correction procedure as
part of the mutation and recombination operators using the
greedy familiarity policy, a maximum tree depth of 10 and
a maximum tree size of 100. In both cases we used a chemi-
cal dictionary comprised of circular atomic environments
of radius 1. 50 replicas were run for each approach, retain-
ing the best-scoring molecule per replica and benchmark.

The different approaches were compared by their designed
molecules’ benchmark scores and SAScores [30]. Molecules
of all 20 benchmarks and 50 replicas were aggregated, for
a total of 1000 optimized molecules per approach. Bench-
mark scores were compared through pairwise Mann–Whit-
ney U-tests [47] with Šidák correction [48]. SAScores were
compared with Tukey’s Honestly Significant Differences
test [49]. α = 0.05 was taken as family-wise error rate and
significance level for all tests.

Results and discussion

Figure 9 compares the correction output using different
selection policies. The amount of computational resources
spent by the tree search is strongly correlated to the size
of the resulting tree (Figure S2, Additional file 1). We can
identify three distinct groups of policies: greedy familiarity,
BFS-like policies and MLR. The greedy familiarity policy
is very effective at correcting molecules, as virtually all out-
put molecules achieve the maximum familiarity of 1 and
could be considered correct. Moreover, it achieves this with
a minimal amount of computational resources. Its biggest
drawback, and the reason the other policies were developed,
is that it favors deep searches, meaning the corrected mol-
ecules may be quite different from the input molecules.

BFS is the benchmark for how close an output molecule
can possibly be to an input molecule. Indeed, unless an input
molecule is familiar to begin with the output molecule must
be different. Greedy distance normalized familiarity, A* and
UCT approach this ceiling quite well. Unfortunately, this
group of policies also spends more resources on the search,
oftentimes to no avail as the output molecule is frequently
not entirely familiar.

MLR stands in between the very exploitative greedy
familiarity and very explorative BFS-like policies. In our
opinion it achieves a good compromise between correct-
ing molecules within reasonable amounts of time while not
straying excessively far away from the input molecule. As a
control we evaluated replacing the MLR model with a con-
stant null model. Despite the null model fitting the training
data well, it cannot extrapolate, leading to poor real world
performance (Figure S3, Additional file 1).

To further understand the anatomy of the generated trees
Fig. 10 depicts diagrams of the search trees resulting from
correcting the same input molecule while using different
selection policies. As can be seen the greedy f2 and MLR
policies define narrower and deeper trees than BFS.

The chemical quality of the input molecules and the out-
put corrected molecules was assessed using the SAScore
[30]. As can be seen in Fig. 11, applying random pertur-
bations to reasonable molecules makes them progressively
harder to synthesize. Encouragingly applying the correction

Fig. 8 Different ways of applying molecule auto-correction in molec-
ular design. It may be used as a final post-processing step of a mol-
ecule generator (A) or as an integral part of a molecule generator by
injecting it into the molecule construction process (B)

 Journal of Computer-Aided Molecular Design (2024) 38:10 10 Page 10 of 18

algorithm to these broken molecules largely recovers their
synthesizability. As SAScores are rather crudes measures
of synthesizability [50] we sought to confirm these find-
ings with retrosynthetic analyses [46]. Figure S5, Additional
file 1 confirms that corrected molecules are indeed easier to
synthesize, but for highly perturbed molecules the fraction
of synthesizable molecules remains small after correction.
The correction algorithm is tasked with finding a molecule
that is simultaneously similar to reference chemistry and
similar to the input perturbed molecule, which is by design
dissimilar to reference chemistry. This is intrinsically a chal-
lenging task as both objectives are opposed. Moreover, since
the retrosynthesis engine is imperfect the reported fraction
of synthesizable molecules is underestimated, as exempli-
fied by less than 60% of the ChEMBL sample being deemed
synthesizable.

If the user would like to apply the algorithm in a low
throughput setting, perhaps as a final sanitization step for
the output of a molecule generator (Fig. 8A), we recommend
choosing an explorative policy that yields molecules closely
related to the input. If resources are infinite, BFS is guar-
anteed to yield the optimal result, but its cost scales rapidly

due to the combinatorial explosion of visited chemical states
as the depth of the search increases (Figure S1, Additional
file 1). UCT and A* are computationally more reasonable.
While both explore approximately the same number of
molecules during the tree search, UCT is computationally
more efficient as vertices are selected by a fast tree traversal,
whereas A* requires a priority queue to be maintained. The
MLR policy is a viable alternative on tight budgets. The
greedy f2 policy can be used as fallback should all afore-
mentioned policies fail to find solutions within reasonable
amounts of time. We advise raising the ceiling on the maxi-
mum tree size as the one we chose for our benchmark is
conservative. Since all molecules in the tree are stored in
memory in practice the user will likely be limited by the
available system memory (Figure S2, Additional file 1).
Note that memory consumption will be higher when the
input molecules are large.

As an example, we took molecules designed by a naive
evolutionary algorithm during optimization tasks and
attempted to correct them using different selection poli-
cies. A sample of incorrect molecules designed by the

Fig. 9 Molecule correction benchmark results. The number of pertur-
bations applied to the input molecule is shown on the x axis. The vio-
lin plots display the density of output molecules’ properties and the
cost to generate them. For the UCT policy we only display the results

of using the optimal coefficient c = 0.5. Results for the remaining c
values can be found in Figure S4, Additional file 1. Note that the tree
size was limited to a maximum of 25,000. Timings are given for a
single-threaded workload on an AMD Epyc 7452 CPU @ 2.35 GHz

Journal of Computer-Aided Molecular Design (2024) 38:10 Page 11 of 18 10

Fig. 10 Diagrams of search
trees resulting from trying to
correct the same input molecule
(OOC1[C]2#S1C2) using dif-
ferent selection policies. Nodes
are color coded according to
their discovery order, with red
and blue being the first and
last nodes to be discovered
respectively. The root node is
shown as a large red node, and
the solution node is shown as a
large blue node

 Journal of Computer-Aided Molecular Design (2024) 38:10 10 Page 12 of 18

evolutionary algorithm as well as their corrected counter-
parts are shown in Fig. 12.

Unfortunately, the molecules’ fitness, as assessed by the
optimization task’s objective function, was degraded by the
correction procedure (Fig. 13). While all policies performed
reasonably well, fitness was preserved best using the explicit
objective preservation selection policy. Further analysis
revealed that fitness degradation was most pronounced in
benchmarks whose scores depend on the presence of spe-
cific and fragile chemical features (Figure S6, Additional
file 1). As one might expect the correction process can dis-
turb these features which negatively affects the score. For
a more hands-on approach to objective preservation, one
could define molecular constraints to preserve key chemical
features. If fitness cannot be preserved during the correction
procedure through any means we recommend enforcing mol-
ecule validity throughout the construction process instead
[16, 17, 36].

If the user intends to apply molecule correction itera-
tively to very large quantities of molecules, it is advisable
to use a cheap and exploitative policy such as the greedy
familiarity policy. While output molecules may not closely

resemble input molecules, sometimes this is not of great
importance, and sometimes it may even be beneficial. Con-
sider a molecular design algorithm that iteratively perturbs
molecules to optimize some objective function. One could
attempt to correct every intermediate molecule as part of
the main loop (Fig. 8B). In this case the correction would
act as an integral part of the perturbation itself, essentially
increasing the step size of the perturbation. This may help
the algorithm in escaping local fitness minima. Even if the
correction process decreases the input molecule’s fitness, the
optimization algorithm would presumably correct for this
by discarding the molecule, reverting to an earlier stage, or
focusing its attention elsewhere. It should also be noted that
if one were to correct iteratively the distances traversed by
correction would match those of input molecules with a sin-
gle perturbation, which are not as dramatic as those observed
for highly perturbed input molecules (Fig. 9). Occasionally
the correction process may effectively undo the effect of the
perturbation that preceded it. While we do not anticipate this
to be a large concern for most applications one could prevent
it from happening using constraints.

Fig. 11 Shift in SAScore distributions associated with molecule
auto-correction using the MLR selection policy. Lower SAScores are
indicative of an easier synthesis. The “0 perturbations” distribution

corresponds to the non-perturbed ChEMBL subset on which the per-
turbed molecules were based

Journal of Computer-Aided Molecular Design (2024) 38:10 Page 13 of 18 10

Fig. 12 Examples of molecules designed by a naïve evolutionary
algorithm (left) and their corrected counterparts (right). The MLR
selection policy and a chemical dictionary with environment radii
of 2 were used for correction. A was designed during the Perindo-

pril MPO benchmark, B was designed during the Amlodipine MPO
benchmark, and C was designed during the Sitagliptin MPO bench-
mark

Fig. 13 Correction algorithm’s effect on the GuacaMol benchmark scores using different selection policies. Points below the diagonal corre-
spond to molecules becoming less fit. Molecules that were already correct are not included as their score would not change

 Journal of Computer-Aided Molecular Design (2024) 38:10 10 Page 14 of 18

To demonstrate the latter approach, we injected the cor-
rection algorithm into the aforementioned evolutionary
algorithm (Fig. 8B). The greedy familiarity policy with a
maximum tree size of merely 100 was chosen to limit com-
putational expenses. Figure 14 shows that injecting mol-
ecule correction into existing molecule generators is a viable
strategy to design molecules that are both fit and easier to
synthesize compared to unconstrained molecular design. It
should be noted that correction-associated synthesizability
improvements are meager due to the GuacaMol benchmark-
ing suites’ scoring functions being biased towards synthe-
sizable molecules [3, 36]. Interestingly, iterative correction
yielded better results than attempting to enforce environ-
ment correctness through molecular construction constraints
(Fig. 14), and it did so consuming less computational
resources (Figure S7, Additional file 1). We hypothesize that
the correction procedure, being unlinked from the objective
function, may drag molecules out of local fitness minima
aiding the optimization algorithm in the search towards the
global minimum.

For completeness’ sake the above experiments and anal-
yses were repeated for atomic environments of radius 2.
Under these conditions the correction injection approach
failed to improve the synthesizability of the designed mol-
ecules, likely because the maximum tree size of 100 is
insufficient to find molecules that satisfy the more stringent
requirements (Figure S8, Additional file 1).

It should be stressed that given the same input molecule
not all policies will generate the same output molecule
(Fig. 15). It might be of interest to apply the algorithm with

different policies and a posteriori select the most desirable
output.

An unintended consequence of our expansion policy is
the “carbonization” of input molecules. Perturbations most
likely to increase the familiarity of a molecule are prior-
itized. As carbon is the backbone of organic chemistry,
including our reference library of ChEMBL [10], substitut-
ing other elements with carbon is preferred by the algorithm.

We also encountered cases where certain selection poli-
cies would trigger the growth of long alkane chains, par-
ticularly exploitative policies such as the greedy f1 policy
(Fig. 16, Figure S9, Additional file 1). We would like the
correction process to modify existing chemical features.
However, a trivial way of maximizing the f1 familiarity is by
adding new familiar chemical features like alkanes (Eq. 3).
This is a classic case of a search algorithm finding unin-
tended ways to exploit the objective function. Frivolously
adding carbons has been described previously as a strategy
employed by algorithms to cheat their way to good bench-
mark results, be it by artificially inflating molecular diver-
sity [4] or reaping low-hanging scoring function rewards
[26, 51]. The easiest solution to the issue is to maximize
the f2 familiarity instead (Eq. 4). While this prevents alkane
growth, the search algorithm may occasionally still find it
advantageous to introduce extraneous carbons as buffers
between heteroatoms (Fig. 16). Correct heteroatom arrange-
ments are tied to specific functional groups. Given a for-
eign functional group the path of least resistance may be to
break apart said group as opposed to rearranging its atoms.
The best carbonization remedy is to choose an explorative

Fig. 14 GuacaMol bench-
mark scores and SAScores
of molecules designed by
an evolutionary algorithm.
Higher benchmark scores and
lower SAScores are better. The
objective preservation policy
was used for post-processing.
Unconstrained design refers
to liberal modification of the
molecular graph and the design
of (likely) invalid molecules.
All other approaches strive to
design molecules with familiar
circular atomic environments of
topological radius 1 but achieve
this goal in different ways.
Constrained design refers to
the use of molecular construc-
tion techniques that prevent the
creation of undesirable chemical
features. **: p < 0.01, ***:
p < 0.001

Journal of Computer-Aided Molecular Design (2024) 38:10 Page 15 of 18 10

Fig. 15 Example input molecules and their corrected counterparts using the greedy f2 and MLR selection policies

 Journal of Computer-Aided Molecular Design (2024) 38:10 10 Page 16 of 18

selection policy. Should this not be an option the user may
choose to disable atom insertions as a perturbation or specify
constraints on which parts and/or attributes of the input mol-
ecule should be preserved by the correction algorithm.

While it is possible to post-process molecules from arbi-
trary sources, it might not be possible to integrate the cor-
rection process into all molecule generators. We have shown
how to inject it into a graph-based evolutionary algorithm,
and we anticipate equivalent implementations and benefits
being achievable for any molecule generators that iteratively
modify molecular graphs. Integration opportunities with
alternative generators are more nuanced. The algorithm’s
input is a molecular graph. Our implementation is based
on the RDKit [52], which means that molecules must be
parsable by the RDKit to be correctable. This precludes the
use of ill-formed SMILES [21]. Ill-formed SMILES can be
the product of malfunctioning generative models. They may
also be an intermediate state of generative recurrent neural
networks [26]. In the latter case correction would have to
be deferred until the SMILES string has been fully formed,
potentially playing a role in sanitizing molecules prior to
their objectives being evaluated. Substituting SMILES for
a more robust line notation such as SELFIES [23] whose
intermediate strings are also valid would enable the “auto-
correct” process to behave more as a molecule “auto-com-
plete”. In any case the correction process would play a role
in steering the chemical space search. Whether this would
antagonize or synergize with the model’s inherent guidance
remains to be explored.

Caution should be applied when employing molecule
generators that rely on the similarity principle, for they
amplify existing chemical biases in data due to prior art
data conditioning future data collection [17, 53]. This can
have detrimental effects on chemical novelty. The problem
is compounded by building pipelines of tools relying on the
same principle, as we do in this work. We are aware this is
suboptimal, but in absence of competing methods grounded
on physical first-principles, chemical bias amplification pos-
tures itself as a necessary evil.

One area worth revisiting in the future is the way in which
correctness is assessed. Currently molecular keys are consid-
ered either foreign or familiar, depending on their frequency
in the chemical dictionary. While the frequency threshold
separating both categories can be tweaked, it would be pref-
erable to treat familiarity as a frequency-dependent continu-
ous variable. We also believe there is potential in further
development of selection policies. The policies explored
herein rely on crude heuristics. We can draw inspiration
for policy design from other fields where tree searches are
used. Synthesis planning in particular has recently witnessed
major breakthroughs thanks to machine learning augmented
policies [54, 55]. We believe that similar methods could be
applied here to better direct the search, reducing the risk
of missing good solutions as well as the cost to find said
solutions.

Fig. 16 Molecule carbonization examples. The greedy f1 selection
policy exploits the scoring function by growing long alkane chains.
The other selection policies cannot exploit the scoring function in the

same way, but the expansion policy still may opt to substitute heter-
oatoms with carbons or to separate heteroatoms by inserting carbons
between them

Journal of Computer-Aided Molecular Design (2024) 38:10 Page 17 of 18 10

Conclusions

We present an algorithm that can identify and fix problems
within molecular graphs. It is implemented as a tree search
that iteratively modifies input molecules until it yields a
correct molecule. Strategies to minimize the length of the
search and maximize the similarity between input incorrect
and output corrected molecules were developed. To the best
of our knowledge this is the first algorithm of its kind, open-
ing the door to novel workflows in molecular design. The
algorithm can be used to post-process the output of molecule
generators, possibly salvaging molecules that would have
otherwise been discarded due to chemical quality concerns.
It may also be integrated into faulty molecule generators
to patch some of their shortcomings or even augment their
capabilities. Ultimately, it enables researchers to delegate
chemical quality assurance to the algorithm instead of engi-
neering new systems from scratch. We hope the algorithm
will economize computational and human resources in
molecular design.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10822- 024- 00549-1.

Acknowledgements We would like to thank our colleagues Olivier
Beyens, Joep Wals, and Roy Aerts for useful discussions regarding
selection policy development and data visualization.

Author contribution AK developed and benchmarked the software.
HDW supervised the research. Both authors contributed to writing
the publication. Both authors read and approved the final manuscript.

Funding This work was supported by a PhD Grant to Alan Kerstjens
from the Research Foundation Flanders (FWO) (FWO-project 39461).
The computational resources and services used in this work were pro-
vided by the Flemish Supercomputer Center (VSC), funded by the
FWO and the Flemish Government.

Data availability Project name: MoleculeAutoCorrect. Project home
page: https:// github. com/ AlanK erstj ens/ Molec uleAu toCor rect.
Archived version: MoleculeAutoCorrect_0.0.2. Operating system(s):
Platform independent. Programming language(s): C + + , Python.
Other requirements: RDKit cheminformatics toolkit [52], Molpert
[36]. License: AGPL 3.0.

Declarations

Competing interests The authors declare no competing interests.

Conflict of interest Not applicable.

Ethical approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

 1. Kutchukian PS, Vasilyeva NY, Xu J et al (2012) Inside the mind of
a medicinal chemist: the role of human bias in compound prioritiza-
tion during drug discovery. PLoS ONE 7:e48476. https:// doi. org/ 10.
1371/ journ al. pone. 00484 76

 2. Gomez L (2018) Decision making in medicinal chemistry: the power
of our intuition. ACS Med Chem Lett 9:956–958. https:// doi. org/ 10.
1021/ acsme dchem lett. 8b003 59

 3. Brown N, Fiscato M, Segler MHS, Vaucher AC (2019) GuacaMol:
Benchmarking Models for de Novo molecular design. J Chem Inf
Model 59:1096–1108. https:// doi. org/ 10. 1021/ acs. jcim. 8b008 39

 4. Renz P, Van Rompaey D, Wegner JK et al (2019) On failure modes
in molecule generation and optimization. Drug Discov Today Tech-
nol 32–33:55–63. https:// doi. org/ 10. 1016/j. ddtec. 2020. 09. 003

 5. Gao W, Coley CW (2020) The synthesizability of molecules pro-
posed by generative models. J Chem Inf Model 60:5714–5723.
https:// doi. org/ 10. 1021/ acs. jcim. 0c001 74

 6. Jensen JH (2019) A graph-based genetic algorithm and generative
model/Monte Carlo tree search for the exploration of chemical space.
Chem Sci 10:3567–3572. https:// doi. org/ 10. 1039/ c8sc0 5372c

 7. Winter R, Montanari F, Steffen A et al (2019) Efficient multi-objec-
tive molecular optimization in a continuous latent space. Chem Sci
10:8016–8024. https:// doi. org/ 10. 1039/ C9SC0 1928F

 8. Segler MHS, Kogej T, Tyrchan C, Waller MP (2018) Generating
focused molecule libraries for drug discovery with recurrent neural
networks. ACS Cent Sci 4:120–131. https:// doi. org/ 10. 1021/ acsce
ntsci. 7b005 12

 9. Bolton EE, Wang Y, Thiessen PA, Bryant SH (2008) Chapter 12 -
PubChem: Integrated Platform of Small Molecules and Biological
Activities. In: Wheeler RA, Spellmeyer DC (eds) Annual Reports
in Computational Chemistry. Elsevier, pp 217–241

 10. Gaulton A, Bellis LJ, Bento AP et al (2012) ChEMBL: A large-
scale bioactivity database for drug discovery. Nucleic Acids Res
40:1100–1107. https:// doi. org/ 10. 1093/ nar/ gkr777

 11. Irwin JJ, Tang KG, Young J et al (2020) ZINC20-A free ultralarge-
scale chemical database for ligand discovery. J Chem Inf Model
60:6065–6073. https:// doi. org/ 10. 1021/ acs. jcim. 0c006 75

 12. Johnson MA, Maggiora GM (1991) Concepts and applications of
molecular similarity, 1st edn. Wiley

 13. Maggiora G, Vogt M, Stumpfe D, Bajorath J (2014) Molecular simi-
larity in medicinal chemistry. J Med Chem 57:3186–3204. https://
doi. org/ 10. 1021/ jm401 411z

 14. Yuan Y, Pei J, Lai L (2011) LigBuilder 2: A practical de novo drug
design approach. J Chem Inf Model 51:1083–1091. https:// doi. org/
10. 1021/ ci100 350u

 15. Kutchukian PS, Lou D, Shakhnovich EI (2009) FOG: Fragment opti-
mized growth algorithm for the de novo generation of molecules
occupying druglike chemical space. J Chem Inf Model 49:1630–
1642. https:// doi. org/ 10. 1021/ ci900 0458

https://doi.org/10.1007/s10822-024-00549-1
https://github.com/AlanKerstjens/MoleculeAutoCorrect
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1371/journal.pone.0048476
https://doi.org/10.1371/journal.pone.0048476
https://doi.org/10.1021/acsmedchemlett.8b00359
https://doi.org/10.1021/acsmedchemlett.8b00359
https://doi.org/10.1021/acs.jcim.8b00839
https://doi.org/10.1016/j.ddtec.2020.09.003
https://doi.org/10.1021/acs.jcim.0c00174
https://doi.org/10.1039/c8sc05372c
https://doi.org/10.1039/C9SC01928F
https://doi.org/10.1021/acscentsci.7b00512
https://doi.org/10.1021/acscentsci.7b00512
https://doi.org/10.1093/nar/gkr777
https://doi.org/10.1021/acs.jcim.0c00675
https://doi.org/10.1021/jm401411z
https://doi.org/10.1021/jm401411z
https://doi.org/10.1021/ci100350u
https://doi.org/10.1021/ci100350u
https://doi.org/10.1021/ci9000458

 Journal of Computer-Aided Molecular Design (2024) 38:10 10 Page 18 of 18

 16. Polishchuk P (2020) CReM: chemically reasonable mutations frame-
work for structure generation. J Cheminform 12:28. https:// doi. org/
10. 1186/ s13321- 020- 00431-w

 17. Kerstjens A, De Winter H (2022) LEADD: Lamarckian evolutionary
algorithm for de novo drug design. J Cheminform 14:3. https:// doi.
org/ 10. 1186/ s13321- 022- 00582-y

 18. Lewell XQ, Judd DB, Watson SP, Hann MM (1998) RECAP - Ret-
rosynthetic Combinatorial Analysis Procedure: A powerful new
technique for identifying privileged molecular fragments with use-
ful applications in combinatorial chemistry. J Chem Inf Comput Sci
38:511–522. https:// doi. org/ 10. 1021/ ci970 429i

 19. Hartenfeller M, Zettl H, Walter M et al (2012) Dogs: Reaction-
driven de novo design of bioactive compounds. PLoS Comput Biol
8:e1002380. https:// doi. org/ 10. 1371/ journ al. pcbi. 10023 80

 20. Spiegel JO, Durrant JD (2020) AutoGrow4: An open-source genetic
algorithm for de novo drug design and lead optimization. J Chemin-
form 12:1–16. https:// doi. org/ 10. 1186/ s13321- 020- 00429-4

 21. Weininger D (1988) SMILES, a chemical language and information
system: 1: introduction to methodology and encoding rules. J Chem
Inf Comput Sci 28:31–36. https:// doi. org/ 10. 1021/ ci000 57a005

 22. O’Boyle N, Dalke A (2018) DeepSMILES: An Adaptation of
SMILES for Use in Machine-Learning of Chemical Structures

 23. Krenn M, Häse F, Nigam A et al (2020) Self-referencing embedded
strings (SELFIES): A 100% robust molecular string representation.
Mach Learn: Sci Technol 1:045024. https:// doi. org/ 10. 1088/ 2632-
2153/ aba947

 24. Gómez-Bombarelli R, Wei JN, Duvenaud D et al (2018) Automatic
chemical design using a data-driven continuous representation of
molecules. ACS Cent Sci 4:268–276. https:// doi. org/ 10. 1021/ acsce
ntsci. 7b005 72

 25. Sattarov B, Baskin II, Horvath D et al (2019) De Novo molecular
design by combining deep autoencoder recurrent neural networks
with generative topographic mapping. J Chem Inf Model 59:1182–
1196. https:// doi. org/ 10. 1021/ acs. jcim. 8b007 51

 26. Olivecrona M, Blaschke T, Engkvist O, Chen H (2017) Molecular
de-novo design through deep reinforcement learning. Journal of
Cheminformatics 9:48. https:// doi. org/ 10. 1186/ s13321- 017- 0235-x

 27. Grisoni F, Moret M, Lingwood R, Schneider G (2020) Bidirectional
molecule generation with recurrent neural networks. J Chem Inf
Model 60:1175–1183. https:// doi. org/ 10. 1021/ acs. jcim. 9b009 43

 28. Nicolaou CA, Brown N (2013) Multi-objective optimization meth-
ods in drug design. Drug Discov Today Technol 10:1–9. https:// doi.
org/ 10. 1016/j. ddtec. 2013. 02. 001

 29. Fromer JC, Coley CW (2023) Computer-aided multi-objective opti-
mization in small molecule discovery. Patterns 4:100678. https:// doi.
org/ 10. 1016/j. patter. 2023. 100678

 30. Ertl P, Schuffenhauer A (2009) Estimation of synthetic accessibility
score of drug-like molecules based on molecular complexity and
fragment contributions. J Cheminform 1:1–11. https:// doi. org/ 10.
1186/ 1758- 2946-1-8

 31. Bickerton GR, Paolini GV, Besnard J et al (2012) Quantifying the
chemical beauty of drugs. Nat Chem 4:90–98. https:// doi. org/ 10.
1038/ nchem. 1243

 32. Thakkar A, Chadimová V, Bjerrum EJ et al (2021) Retrosynthetic
accessibility score (RAscore)-rapid machine learned synthesizabil-
ity classification from AI driven retrosynthetic planning. Chem Sci
12:3339–3349. https:// doi. org/ 10. 1039/ d0sc0 5401a

 33. Morgan HL (1965) The generation of a unique machine descrip-
tion for chemical structures—a technique developed at chemical
abstracts service. J Chem Doc 5:107–113. https:// doi. org/ 10. 1021/
c1600 17a018

 34. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J
Chem Inf Model 50:742–754. https:// doi. org/ 10. 1021/ ci100 050t

 35. Weininger D, Weininger A, Weininger JL (1989) SMILES. 2. Algo-
rithm for generation of unique SMILES notation. J Chem Inf Com-
put Sci 29:97–101. https:// doi. org/ 10. 1021/ ci000 62a008

 36. Kerstjens A, De Winter H (2023) A molecule perturbation soft-
ware library and its application to study the effects of molecu-
lar design constraints. J Cheminform. https:// doi. org/ 10. 1186/
s13321- 023- 00761-5

 37. Riniker S, Landrum GA (2013) Open-source platform to benchmark
fingerprints for ligand-based virtual screening. J Cheminform 5:26.
https:// doi. org/ 10. 1186/ 1758- 2946-5- 26

 38. O’Boyle NM, Sayle RA (2016) Comparing structural fingerprints
using a literature-based similarity benchmark. J Cheminform 8:36.
https:// doi. org/ 10. 1186/ s13321- 016- 0148-0

 39. Bajusz D, Rácz A, Héberger K (2015) Why is Tanimoto index an
appropriate choice for fingerprint-based similarity calculations? J
Cheminform 7:1–13. https:// doi. org/ 10. 1186/ s13321- 015- 0069-3

 40. Auer P, Cesa-Bianchi N, Fischer P (2002) Finite-time analysis of
the multiarmed bandit problem. Mach Learn 47:235–256. https://
doi. org/ 10. 1023/A: 10136 89704 352

 41. Kocsis L, Szepesvári C (2006) Bandit Based Monte-Carlo Planning.
In: Fürnkranz J, Scheffer T, Spiliopoulou M (eds) Machine Learn-
ing: ECML 2006. Springer, Berlin, Heidelberg, pp 282–293

 42. Hart P, Nilsson N, Raphael B (1968) A formal basis for the heuristic
determination of minimum cost paths. IEEE Trans Syst Sci Cyber
4:100–107. https:// doi. org/ 10. 1109/ TSSC. 1968. 300136

 43. Grygorian A, Iacob IE (2018) A concise proof of the triangle ine-
quality for the Jaccard Distance. Coll Math J 49:363–365

 44. Maggiora GM (2006) On outliers and activity CliffsWhy QSAR
often disappoints. J Chem Inf Model 46:1535–1535. https:// doi. org/
10. 1021/ ci060 117s

 45. Bajorath J (2017) Representation and identification of activity cliffs.
Expert Opin Drug Discov 12:879–883. https:// doi. org/ 10. 1080/
17460 441. 2017. 13534 94

 46. Genheden S, Thakkar A, Chadimová V et al (2020) AiZynthFinder:
a fast, robust and flexible open-source software for retrosyn-
thetic planning. J Cheminform 12:1–9. https:// doi. org/ 10. 1186/
s13321- 020- 00472-1

 47. Mann HB, Whitney DR (1947) On a test of whether one of two
random variables is stochastically larger than the other. Ann Math
Stat 18:50–60

 48. Šidák Z (1967) Rectangular confidence regions for the means of
multivariate normal distributions. J Am Stat Assoc 62:626–633.
https:// doi. org/ 10. 1080/ 01621 459. 1967. 10482 935

 49. Tukey JW (1949) Comparing individual means in the analysis of
variance. Biometrics 5:99–114

 50. Skoraczyński G, Kitlas M, Miasojedow B, Gambin A (2023) Criti-
cal assessment of synthetic accessibility scores in computer-assisted
synthesis planning. Journal of Cheminformatics 15:6. https:// doi. org/
10. 1186/ s13321- 023- 00678-z

 51. Guimaraes GL, Sanchez-Lengeling B, Outeiral C, et al (2017)
Objective-Reinforced Generative Adversarial Networks (ORGAN)
for Sequence Generation Models

 52. Landrum GA RDKit: Open-source cheminformatics.
 53. Dost K, Pullar-Strecker Z, Brydon L et al (2023) Combatting over-

specialization bias in growing chemical databases. J Cheminform
15:53. https:// doi. org/ 10. 1186/ s13321- 023- 00716-w

 54. Segler MHS, Waller MP (2017) Neural-symbolic machine learning
for retrosynthesis and reaction prediction. Chem Eur J 23:5966–
5971. https:// doi. org/ 10. 1002/ chem. 20160 5499

 55. Segler MHS, Preuss M, Waller MP (2018) Planning chemical
syntheses with deep neural networks and symbolic AI. Nature
555:604–610. https:// doi. org/ 10. 1038/ natur e25978

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1186/s13321-020-00431-w
https://doi.org/10.1186/s13321-020-00431-w
https://doi.org/10.1186/s13321-022-00582-y
https://doi.org/10.1186/s13321-022-00582-y
https://doi.org/10.1021/ci970429i
https://doi.org/10.1371/journal.pcbi.1002380
https://doi.org/10.1186/s13321-020-00429-4
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1088/2632-2153/aba947
https://doi.org/10.1088/2632-2153/aba947
https://doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.1021/acs.jcim.8b00751
https://doi.org/10.1186/s13321-017-0235-x
https://doi.org/10.1021/acs.jcim.9b00943
https://doi.org/10.1016/j.ddtec.2013.02.001
https://doi.org/10.1016/j.ddtec.2013.02.001
https://doi.org/10.1016/j.patter.2023.100678
https://doi.org/10.1016/j.patter.2023.100678
https://doi.org/10.1186/1758-2946-1-8
https://doi.org/10.1186/1758-2946-1-8
https://doi.org/10.1038/nchem.1243
https://doi.org/10.1038/nchem.1243
https://doi.org/10.1039/d0sc05401a
https://doi.org/10.1021/c160017a018
https://doi.org/10.1021/c160017a018
https://doi.org/10.1021/ci100050t
https://doi.org/10.1021/ci00062a008
https://doi.org/10.1186/s13321-023-00761-5
https://doi.org/10.1186/s13321-023-00761-5
https://doi.org/10.1186/1758-2946-5-26
https://doi.org/10.1186/s13321-016-0148-0
https://doi.org/10.1186/s13321-015-0069-3
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1021/ci060117s
https://doi.org/10.1021/ci060117s
https://doi.org/10.1080/17460441.2017.1353494
https://doi.org/10.1080/17460441.2017.1353494
https://doi.org/10.1186/s13321-020-00472-1
https://doi.org/10.1186/s13321-020-00472-1
https://doi.org/10.1080/01621459.1967.10482935
https://doi.org/10.1186/s13321-023-00678-z
https://doi.org/10.1186/s13321-023-00678-z
https://doi.org/10.1186/s13321-023-00716-w
https://doi.org/10.1002/chem.201605499
https://doi.org/10.1038/nature25978

	Molecule auto-correction to facilitate molecular design
	Abstract
	Graphical abstract

	Introduction
	Methods
	Molecular characterization
	Reference dictionary
	Tree search algorithm
	Selection policy
	Upper confidence bounds applied to trees
	A-star
	Multiple linear regression distance prediction
	Explicit objective preservation

	Expansion policy

	Constraints
	Benchmark

	Results and discussion
	Conclusions
	Acknowledgements
	References

