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Abstract
Ensuring that computationally designed molecules are chemically reasonable is at best cumbersome. We present a molecule 
correction algorithm that morphs invalid molecular graphs into structurally related valid analogs. The algorithm is imple-
mented as a tree search, guided by a set of policies to minimize its cost. We showcase how the algorithm can be applied to 
molecular design, either as a post-processing step or as an integral part of molecule generators.
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Introduction

Computational drug discovery is a challenging task. Not 
only must a computational chemist strive to design mole-
cules with potent predicted biological activity, but they must 
also ensure that the designed molecules are “reasonable”, to 

the extent that they are chemically valid, synthesizable, and 
overall drug-like. Experienced chemists will know a prob-
lematic molecule when they see one [1, 2]. Unfortunately, 
virtual molecule generators, lacking chemical intuition, tend 
to propose molecules that are chemically unstable and reac-
tive, difficult to synthesize, conformationally strained or 
exhibit impossible electronic configurations [3–5] (Fig. 1).

Medicinal chemistry efforts are focused on designing 
chemically attractive molecules, which wind up recorded in 
chemical databases [9–11]. The “similar structure, similar 
property” principle, which is the cornerstone of molecular 
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design, claims that similar molecules exhibit similar proper-
ties [12, 13]. It follows that if a query molecule resembles 
known appealing molecules it is likely to be appealing itself, 
with the contrary being the case when it is dissimilar.

The similarity principle can be exploited to reduce the 
likelihood of designing uncomely molecules. Indeed, most 
molecular design algorithms rely on it in some shape or 
form. A historically popular approach has been to construct 
chemicals as combinations of smaller molecular fragments, 
either systematically extracted from reference molecules 
[14–18] or sourced from commercial reagent libraries [19, 
20]. Fragment combination is governed by rules that range 
in chemical sophistication from knowledge-based bonding 
[15–17] to simulated chemical reactions [18–20]. More 
recent research efforts have focused on generative models, 
that is, machine learning models trained to learn chemical 
distributions and sample molecular representations from 
them. The most popular molecular representation for gen-
erative models are text-based line notations [21–23]. Models 

can learn the syntax and semantics of said line notations, 
allowing them to translate back and forth between discrete 
textual and continuous numerical molecular representations 
[7, 24, 25] or to generate strings character-by-character 
conditioning the character probability distribution on previ-
ously sampled characters [8, 26, 27]. Alternative approaches 
consider chemical appeal as explicit parameters in a multi-
objective optimization setting [28, 29], but even then the 
similarity principle frequently makes an appearance as the 
basis of chemical desirability objective functions [30–32].

The aforementioned strategies succeed at reducing the 
number of deficient generated molecules to varying degrees, 
but they are not infallible [3, 5]. Many resources are being 
channeled into further developing techniques to generate 
chemically desirable molecules. An unfortunate casualty 
of this focused effort is that research into optimization and 
search strategies has been stalled.

Herein we describe an algorithm that “corrects” mole-
cules. Our intention is twofold. Firstly, we envision the tool 

Fig. 1  Examples of objectionable molecules generated by diverse 
molecule generators during a JAK2 inhibitor design exercise, as 
reported by [4]. A was generated by a graph-based genetic algorithm 

[6], B was generated by a particle swarm optimizer in an auto-
encoder latent space [7] and C was generated by a SMILES-based 
recurrent neural network [8]
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being used to address molecule quality issues that were not 
caught or covered by a third-party molecule generator. Sec-
ondly, and perhaps most importantly, we hope that it will 
enable researchers to divest some of their attention from 
avoiding non-sense molecule generation to other aspects of 
molecular design.

The algorithm describes a query molecule with local 
structural features and compares said features to those found 
in reference desirable molecules. If the query molecule 
possesses features that are absent or rare in the reference 
molecules, the features are deemed “foreign” or incorrect. 
Otherwise, they are deemed “familiar” or correct. Through 
a tree search algorithm, we locally modify foreign features 
until they are familiar enough. Certain heuristics are used to 
prioritize modifications that are most likely to yield familiar 
features. One can draw an analogy between our algorithm 
and a primitive spell checker, where chemical features are 
the equivalent of words. Each word is checked against a 
dictionary of known words. If a word is not present, it is 
deemed incorrect and a heuristic suggests similar correct 
words.

Methods

Molecular characterization

To identify if a molecule is foreign, and if so, what parts 
are foreign, we defined some simple localized molecular 
descriptors. Atoms were characterized with atom keys. Atom 
keys are integer tuples comprising an atom’s degree (D) (i.e. 
its number of adjacent atoms), valence (V), atomic number 
(Z), formal charge (Q) and number of hydrogens (H). These 
properties were chosen because they are largely independ-
ent from the atom’s surrounding chemical environment. To 
avoid cyclic dependencies between properties, in this work 
valence is defined as the sum of an atom’s bonds’ orders, 
without considering the atom’s formal charge. The order of 
the atom key’s properties is relevant. We ordered the prop-
erties by perceived decreasing significance or importance. 
For example, we assume that a change in degree, and there-
fore topology, is more disruptive to a molecule’s structure 
and properties than a change in atomic number. Bonds were 
characterized as a tuple of the bonded atoms’ keys (AK) and 
an integer representing the bond’s type (B), which can be 
thought of as the bond’s order (Fig. 2).

We also defined partial keys of the atom and bond keys. 
Partial atom keys were constructed by taking the first j most 
significant properties of the atom key, with j∈  [1, k-1], 
where k is the number of properties in an atom key. Conse-
quently, partial key j contains all partial keys with a lower j. 
The same procedure was applied to bond keys but with the 
range j ∈ [2, k-1]. This yields a total of four partial atom keys 

and one partial bond key (Fig. 2). Partial keys can be sorted 
lexicographically, enabling fast key-value store searches.

Lastly, circular atomic environments were defined for 
all atoms in the molecules. A circular atomic environment 
comprises a central atom and all surrounding atoms within a 
given topological distance termed the environment’s radius 
r. The resulting atomic environment was hashed to an inte-
ger using the Morgan algorithm [33, 34], and said hash 
was taken as the environment key or unique identifier of 
the environment. As such, these identifiers are conceptually 
equivalent to ECFP fingerprint features [34]. The Morgan 
algorithm requires initial atom identifiers or “invariants”. 
There is some flexibility in the selection of atomic invari-
ants. By default we use the atom keys’ hashes as invariants, 
mimicking the Daylight atomic invariants [35]. However one 
could incorporate other information such as ring member-
ship [34, 36].

Reference dictionary

In this work a subset of ChEMBL31 [10] was chosen as the 
reference library of drug-like molecules. Only small organic 
molecules were retained. Large biomolecules, natural prod-
ucts and polymers were excluded. For the remaining mol-
ecules the unsalted and non-ionized “parent form” was cho-
sen. Molecules in the reference library were characterized 
using the aforementioned descriptor keys, and the frequency 
of each key recorded in a “chemical dictionary”. We gener-
ated two dictionaries using environment radii of 1 and 2 
respectively. If a key’s frequency surpasses a user-specified 
threshold (by default 0) it is deemed familiar, and otherwise 
it is deemed foreign. Owing to the way in which keys are 
defined, simpler keys are contained by more complex keys. 
For example, environment keys contain bond keys and bond 

Fig. 2  Partial atom and bond key pyramid. Higher order keys encom-
pass lower order keys. The (D, V, Z, Q, H) key constitutes the atom 
key AK, and (AK1, AK2, B) constitutes the bond key
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keys contain atom keys (Fig. 2). This defines unidirectional 
dependency relationships between them, meaning that if a 
key is foreign all dependent keys containing it must also be 
foreign. The reverse is not necessarily true.

Tree search algorithm

The molecule correction algorithm was implemented as a 
tree search. An incorrect input molecule serves as the root 
of the tree. With each iteration a molecule or vertex within 
the tree is selected and partially expanded. Expansion in this 
context means enumeration of topologically similar neigh-
boring molecules, and establishment of a parental relation-
ship between the selected predecessor and its neighboring 
successors. Expansions were performed using the graph-
based molecule perturbation library Molpert [36]. Pertur-
bations performed by the library include atom- and bond 
invariant changes and atom/bond insertions/deletions. To 
expedite the correction process molecules are sanitized (as 
described in [36]) after each perturbation by default, but 
this behavior can be disabled. Molpert enables the system-
atic enumeration of a molecule’s neighbors. Neighbors are 
enumerated lazily. The enumeration order is optimized to 
maximize the likelihood of finding a correct molecule with 
the smallest number of expansions.

As with any tree search algorithm, the search is guided 
by a search strategy or policy that dictates how the tree is 
expanded with each iteration. For our tree search we distin-
guish two different types of policies. One policy, which we 
call the selection policy, selects which vertex to expand next. 
The second policy, termed the expansion policy, determines 
how the selected vertex is expanded.

Selection policy

To guide the search towards familiar molecules we define the 
concept of familiarity. Every time a vertex is added to the 
tree it is featurized into atom, bond, and environment keys. 
Said keys are classified into foreign and familiar by looking 
them up in the chemical dictionary. Familiarity is calculated 
as a function of the total number of keys n (Eq. 1) and the 
number of familiar keys  nf (Eq. 2).

In Eq. 1  na,  nb and  ne denote the total number of atom, 
bond, and environment keys of a given molecule respec-
tively, whereas in Eq. 2  nf

a,  nf
b and  nf

e denote their familiar 
counterparts.

(1)n = na + nb + ne

(2)nf = nf
a
+ n

f

b
+ nf

e

We employ two alternative definitions of familiarity: f1 
(Eq. 3) and f2 (Eq. 4). Both range between 0 and 1, with 1 
indicating a familiar or correct molecule, and can mostly be 
used interchangeably. f1 can be interpreted as a similarity 
coefficient between a query molecule and some unknown 
correct molecule. Conversely, 1—f1 can be interpreted as 
the distance to a correct molecule. f1 is therefore well suited 
for estimating how close to a solution a given molecule is. f2 
provides weaker theoretical guarantees as a similarity coef-
ficient, for its lower boundary is dependent on the molecule’s 
size. f1’s drawback is that it can be maximized trivially by 
incrementing the numerator and denominator by the same 
amount, as occurs when adding new familiar environments 
(e.g. alkane carbons). f2 cannot be exploited in the same way, 
and is better suited as an optimization target.

Different selection policies were explored. In all cases 
the selection is limited to foreign molecules that have 
not been fully expanded yet. As baselines we evaluated 
Breadth-First Search (BFS), where the shallowest vertices 
are expanded first, and greedy familiarity selection, where 
the vertices with the highest f2 familiarity are expanded first. 
These correspond to exploration-only and exploitation-only 
approaches respectively (Fig. 3). Note that a deep BFS is 
computationally intractable since the branching factor of 
chemical space is very large (Figure S1, Additional file 1).

There are many correct molecules and many paths lead-
ing to them from the input molecule. We would prefer 
finding the correct molecule w that is most closely related 
to the input or root molecule u, as according to the simi-
lar property principle it is the most likely to preserve the 
properties of the input molecule. The distance between 
the input molecule u and another molecule v of the tree is 
measured as the ECFP4 Tanimoto distance d(u,v) between 
both. We chose this fingerprint and distance metric combi-
nation because they have been shown to be good predictors 
of activity preservation [37–39].

Some policies to favor shallow tree searches and bet-
ter balance exploration and exploitation were devised 
(Fig. 3). The naivest one is to greedily select vertices with 
the highest f1/d(u,v) ratio. More sophisticated policies are 
described below.

Upper confidence bounds applied to trees One can esti-
mate how close a vertex is to a yet to be discovered cor-
rect molecule using the familiarity metric. However, it is 
not always true that the vertex with the highest famili-

(3)f1 =
nf

n

(4)f2 =
1

n − nf + 1
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arity is involved in the shortest  path to the closest cor-
rect molecule. The values (i.e. familiarities) of a parent 
vertex’s children follow an a priori unknown distribution. 
We can get better estimates of the expected child value 
by sampling or generating more children. As more sam-
ples become available the estimate trends towards the true 
value. Given limited computational resources one must 
choose between exploring vertices with uncertain distri-
butions or exploiting vertices with the most promising 
distributions. This is known as a bandit problem, and the 
Upper Confidence Bound (UCB) strategy can be applied 
to tackle it [40]. UCB applied to Tree searches (UCT) dic-
tates that at each iteration one should expand the vertex 
with the highest upper confidence interval bound [41]. 
In other words, one should expand the vertex for which 
the potential upside is maximized. Mathematically, this 
means expanding the vertex v maximizing Eq. 5.

In Eq. 5 f1v is the average f1 familiarity of v’s children, 
nv is the number of times v was expanded, Nv is the number 
of times v’s parent was expanded. The first term of Eq. 5 
is exploitative and the second term is explorative. c is a 
coefficient balancing between exploitation and exploration. 
In this work we explored c values of ½, 1, 

√
2 and 2.

UCT is frequently discussed in relation to Monte Carlo 
Tree Search (MCTS). The difference between a plain tree 
search and MCTS is that in the former the value of a vertex 
is given by a heuristic function (in our case the familiar-
ity) whereas in the latter the value of a vertex is estimated 
through means of random simulations or “rollouts”. We 
want to clarify that our tree search is not a MCTS despite 
using the UCT policy, as we did not believe random 

(5)UCB1 = f1v + c

√
ln
(
Nv

)

nv

simulations would produce significantly better value esti-
mates than the familiarity heuristic and wanted to keep 
resource usage to a minimum.

A‑star The A* (pronounced A-star) search algorithm is a 
path finding algorithm suitable for finding close to opti-
mal shortest paths in a graph within reasonable amounts 
of time [42]. It selects for exploration/expansion the ver-
tex v for which Eq. 6 is minimized.

In Eq. 6 m(v) is the distance traversed to reach v. In our 
case m(v) is the topological distance between vertex v and 
the root vertex u, that is, m(v) = d(u,v). h(v) is a heuristic 
estimate of the distance between v and an end point w, in 
our case a correct molecule. In other words, h(v) ~ d(v,w). 
An obvious heuristic candidate is h(v) = 1 – f1(v) (Eq. 7).

d(v,w) is a Tanimoto distance, which is the complement 
of the Tanimoto similarity or Jaccard index. If V and W 
denote the feature set of molecules v and w, their Jaccard 
index J(v,w) is calculated according to Eq. 8.

f1(v) is a similarity index measuring the similarity to some 
unknown correct molecule w. While not equivalent to the 
Jaccard index, it is related to it. If W denotes the feature set 
of this hypothetical correct molecule, f1(v) can be rewritten 
as shown in Eq. 9.

(6)g(v) = m(v) + h(v)

(7)g(v) = d(u, v) + 1 − f1(v)

(8)

J(v,w) = 1 − d(v,w) =
|V ∩W|
|V ∪W|

=
|V ∩W|

|V| + |W| − |V ∩W|

Fig. 3  Different types of selection policies. Orange vertices rep-
resent visited vertices. The goal is to find the optimal green vertex 
while minimizing the number of visited vertices. Greedy search visits 
very few vertices but may miss the goal vertex. Breadth-first search is 

guaranteed to find the goal vertex but visits many other vertices in the 
process. An ideal selection policy balances exploration and exploita-
tion
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If f1(v) were calculated using as keys solely ECFP fea-
tures Eq. 8 and Eq. 9 would differ only in their denomina-
tor. It is clear that |V| + |W| − |V ∩W| ≥ |V| . Therefore, 
1 – d(v,w) ≤ f1(v), or equivalently 1 – f1(v) ≤ d(v,w), which 
would make 1 – f1(v) an admissible heuristic. Moreover, 
since Jaccard distances are known to satisfy the triangle 
inequality [43], that is, d(u,w) ≤ d(u,v) + d(v,w), the heuris-
tic would also be consistent. Using a consistent heuristic 
guarantees that the algorithm will find the optimal solution 
given enough time. We included additional terms in f1(v) 
besides the environment keys as we believe this additional 
granularity can provide finer guidance to the tree search. 
Consequently 1 – f1(v) as described in Eq. 3 is theoretically 
not an admissible heuristic. Nonetheless in practice it very 
rarely overestimates the d(v,w) distance (Fig. 4).

Multiple linear regression distance prediction A* algorithm 
was devised for path finding and searches for the shortest 
path between two vertices. We are interested in finding the 
closest goal vertex, that is, minimizing the distance to a goal 
vertex “as the crow flies”. Both distances are not equivalent 
(Fig. 5).

To minimize d(u,w) we developed a policy that selects the 
vertex for which the predicted d(u,w) is minimal. We wanted 
to predict d(u,w) as a function of d(u,v) and f1(v), which 
are both known for any vertex. To study the relationships 
between these metrics we randomly perturbed a sample of 
 103 molecules from ChEMBL [10] by applying between 1 
and 10 perturbations to each of them using Molpert [36] 
for a total of  104 perturbed and likely incorrect molecules. 
We then attempted to correct these molecules with BFS as 
selection policy, which, given sufficient resources, guaran-
tees to find the closest correct molecule. A dictionary con-
taining chemical environments of radius 2 was used. Once 
a correct molecule had been found the search was allowed 

(9)f1(v) =
|V ∩W|
|V|

to continue until the whole tree level was visited. The maxi-
mum tree size was limited to  105. Of the 10,000 structures, 
1,573 molecules were successfully corrected within these 
resource constraints, with an average search depth of 2.4 
edges. For each vertex along the shortest path between the 
corrected molecule and the root vertex we measured d(u,v), 
f1(v) and d(u,w) for a total of 3,773 data points which we 
took as training data. A Multiple Linear Regression (MLR) 
model was fit on this data (Eq. 10), resulting in a model with 
a Root Mean Squared Error (RMSE) of 0.135 (Fig. 6). As a 
control we also built the null model g(v) =

−

d(u,w)= 0.383 , 
with an RMSE of 0.159. Constants can be quite predictive 
when the response variable has a narrow range. Since our 
training data is comprised of shallow searches the null model 
appears unusually predictive. However, constants cannot 
extrapolate by nature, and therefore the null model won’t be 
predictive for deeper searches. The practical shortcomings 
of the null model will be showcased later.

(10)g(v) = 0.42 ∙ d(u, v) − 0.91 ∙ f1(v) + 1.18

Fig. 4  Relationships between d(u,v), d(v,w), d(u,w) and 1—f1(v). The 
two leftmost panels show that in practice 1—f1(v) is an almost admis-
sible and consistent heuristic respectively. The rightmost panel is vis-

ual proof of Jaccard distances obeying the triangle inequality. Note 
that the correlation between d(u,v) + d(v,w) and d(u,w) is very high, 
which is typical of hyper dimensional spaces such as chemical space

Fig. 5  Difference between path distance (d(u,v) + d(v,w)) and straight 
distance (d(u,w))
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Explicit objective preservation The above-described selec-
tion policies try to find correct molecules that are structur-
ally closely related to the input molecule. The primary rea-
son for doing so is that structurally similar molecules are 
believed to have similar properties [12, 13]. Yet this is not 
always the case [44, 45]. Two molecules may share a large 
common substructure and differ in a single atom. While the 
overall structural similarity between them may be large, if 
this distinctive atom is key to the molecule’s activity their 
properties may differ significantly.

Given an objective function o(v) that evaluates a ver-
tex v’s property of interest we can explicitly guide the tree 
search into preserving this objective as opposed to relying 
implicitly on the similar property principle [12]. This helps 
tackle the cases where said principle breaks down. A simple 
way to do so is selecting for expansion the vertex v for which 
Eq. 11 is maximal. Note that the objectives are multiplied as 
opposed to being summed to prevent the search algorithm 
from sacrificing one objective in favor of the other.

Expansion policy

A molecule is expanded by applying a perturbation to a copy 
of itself. Perturbations that are most likely to make the mol-
ecule familiar are applied first. Foreign molecular keys are 
identified and ordered according to their significance. Iden-
tifying the most significant foreign key serves as a way of 
identifying the most pressing problem a molecule has. The 
location of the problem is given by the location of the key, 
which is either an atom or a bond. It is this atom or bond that 
will be targeted by a perturbation.

When it comes to foreign atom and bond keys it is pos-
sible to identify not only the location but also the nature 

(11)g(v) = f1(v) ∙ o(v)

of the problem. Partial keys build up on each other by pro-
gressively adding properties. Since more significant keys 
are contained by the less significant ones the latter cannot 
be familiar if the former are not either. The property dif-
ferentiating the most significant foreign partial key from its 
familiar predecessor partial key is responsible for the lat-
ter being foreign. For example, the most significant foreign 
partial atom key may be DVZ = (4, 6, 6), corresponding 
to a hexavalent carbon. Its predecessor key DV = (4, 6) is 
necessarily the least significant familiar key. We can then 
conclude that the atomic number (Z) is not compatible with 
the atom’s degree and valence. Since we deem the atomic 
number to be less significant than the degree or valence, we 
identify the atomic number as the culprit for the atom key 
being foreign, meaning perturbations modifying the atomic 
number will be prioritized.

The predecessor key can also be used to access the chemi-
cal dictionary and retrieve acceptable property values for the 
successor key. These values are sorted according to their fre-
quency in reference molecules in descending order, meaning 
that the most frequent values are tried first. In the example 
above we can use the DV key to retrieve elements compat-
ible with an atom of degree 4 and valence 6, which might 
be sulfur (Z = 16) and selenium (Z = 34). Sulfur is more fre-
quent than selenium, so a perturbation replacing the carbon 
with sulfur would be prioritized.

Choosing which perturbations to apply to correct Z, Q, 
H or B is obvious as each of these properties has a corre-
sponding perturbation to change its value. Correcting other 
properties and keys is less trivial. D is corrected by deleting 
bonds associated with the atom or deleting adjacent atoms. 
Depending on the dictionary it may also be possible to cor-
rect it by inserting more bonds or atoms, but this is disabled 
by default, as for organic molecules degrees higher than 6 
are exceedingly rare. V is preferably corrected by changing 
the bond types (i.e. bond orders) of bonds associated with 

Fig. 6  MLR model fit to training data. The two leftmost panels show the correlation between each of the model’s parameters and the training 
data/predictions separately, while the rightmost panel aggregates the effects of both parameters
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the atom. If this does not succeed it may also be corrected 
by modifying the topology of the molecule, in the same way 
one would correct D.

Two atom keys AK may be familiar separately, but their 
combination in a bond key AK1AK2 may be foreign. If 
the AK1AK2 partial key is foreign one or both atom keys 
must be changed. Perturbation types can be ordered by 
significance similarly to how molecular keys are ordered 
by significance. The lower the significance of a perturba-
tion the less it will disrupt the molecule when applied. 
The perturbation significance order matches the atom 
property significance order (Fig. 2), being from least to 
most significant as follows: number of hydrogen changes, 
formal charge changes, atomic number changes, bond type 
changes, bond deletions, atom deletions, bond insertions 
and atom insertions. Less significant perturbations are 
applied first to disrupt the molecule as little as possible. 
While deletions do not necessarily disrupt the molecule 
less than insertions, they typically simplify the molecule. 
Simple molecules are more likely to be familiar, which is 
why deletions are prioritized over insertions.

Once all atom and bond keys have been corrected the 
molecule may still possess foreign atomic environments. 
Recall that atomic environments are characterized solely 
by their hash, meaning little information about what makes 
them foreign is available. Atomic environments overlap, 
in the sense that the same atom or bond may be a part of 
multiple environments simultaneously. Knowing the exact 
boundaries of atomic environments, it is possible to cal-
culate in how many environments a given atom or bond 
participates (Fig. 7). We calculate the “foreign environ-
ment membership” of atoms and bonds, that is the number 
of foreign environments they are involved in. Atoms and 
bonds for which this number is highest are prioritized by 
perturbations, under the assumption that since they partici-
pate in many foreign environments, they are likely to be a 
culprit for the environments being foreign. Ties are broken 

with the atom- and bond keys’ frequencies, prioritizing 
least frequent keys. Once a target has been acquired per-
turbations are executed in order of increasing significance, 
just like for bond keys.

Constraints

Our molecule auto-correction implementation was devel-
oped using the graph-based molecule perturbation library 
Molpert [36]. One of Molpert’s features is the support of 
user-specified arbitrary constraints perturbed molecules 
ought to fulfill. This functionality is inherited by the auto-
correct implementation, providing the user with fine grained 
control over the output molecules. Among other things, this 
allows the user to define properties and/or parts of the mole-
cule that should not be modified by the correction algorithm.

Benchmark

A random sample of  103 molecules from ChEMBL31 [10] 
was taken. Molpert [36] was used to “break” these molecules 
by sequentially applying 10 random perturbations to each 
molecule, resulting in a series of 10 perturbed and likely 
incorrect molecules. In total  104 perturbed molecules were 
generated. These molecules were sorted by the number of 
perturbations that gave rise to them. On average, as more 
random perturbations are applied to a molecule, more for-
eign keys are generated, decreasing its familiarity. We then 
attempted to correct these perturbed molecules with our 
algorithm using the different selection policies described 
above. A maximum tree depth of 25 and tree size of 25,000 
molecules were imposed. A chemical dictionary of circular 
environments of radius 2 was used for this purpose. The 
output molecule as well as its familiarity and similarity to 
the input molecule were recorded. The familiarity provides 
some measure of how “correct” molecules are. Nonetheless, 

Fig. 7  Foreign atomic environ-
ments and their overlap. The 
central unobtainium atom 
(Uo) is foreign. All atomic 
environments it is a part of are 
necessarily foreign too. Foreign 
circular atomic environments of 
radius 1 are highlighted in pink. 
The bottom molecule labels 
each atom and bond based on 
how many foreign environments 
they are involved in. The Uo 
atom is involved in all foreign 
environments, making it a likely 
culprit for the environments 
being foreign
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to better contextualize the quality of the generated molecules 
we also measured their SAScore [30] and ran retrosynthetic 
analysis on them with AiZynthFinder [46] using the ZINC 
[11] reactants stock and United States Patent and Trade-
mark Office-derived reaction template policy provided by 
the authors. SAScores were calculated using ChEMBL31 
[10] as reference chemistry. Molecules were sanitized prior 
to calculating their properties.

We investigated two scenarios of how molecule correc-
tion may be applied in molecular design (Fig. 8). In both 
cases we took a previously published evolutionary algorithm 
capable of (1) designing molecules without any regard for 
chemical validity and (2) designing molecules fulfilling 
specific structural requirements [17, 36]. The algorithm 
was tasked with designing high-scoring molecules in the 
goal-directed GuacaMol benchmark suite, consisting of 20 
ligand-based benchmarks [3]. As a first scenario (Fig. 8A) 
molecules designed without constraints by the algorithm 
were subjected to auto-correction as a post-processing step 
using different selection policies, a maximum tree depth 
of 25 and a maximum tree size of 25,000. For our second 
scenario (Fig. 8B), we injected the correction procedure as 
part of the mutation and recombination operators using the 
greedy familiarity policy, a maximum tree depth of 10 and 
a maximum tree size of 100. In both cases we used a chemi-
cal dictionary comprised of circular atomic environments 
of radius 1. 50 replicas were run for each approach, retain-
ing the best-scoring molecule per replica and benchmark. 

The different approaches were compared by their designed 
molecules’ benchmark scores and SAScores [30]. Molecules 
of all 20 benchmarks and 50 replicas were aggregated, for 
a total of 1000 optimized molecules per approach. Bench-
mark scores were compared through pairwise Mann–Whit-
ney U-tests [47] with Šidák correction [48]. SAScores were 
compared with Tukey’s Honestly Significant Differences 
test [49]. α = 0.05 was taken as family-wise error rate and 
significance level for all tests.

Results and discussion

Figure 9 compares the correction output using different 
selection policies. The amount of computational resources 
spent by the tree search is strongly correlated to the size 
of the resulting tree (Figure S2, Additional file 1). We can 
identify three distinct groups of policies: greedy familiarity, 
BFS-like policies and MLR. The greedy familiarity policy 
is very effective at correcting molecules, as virtually all out-
put molecules achieve the maximum familiarity of 1 and 
could be considered correct. Moreover, it achieves this with 
a minimal amount of computational resources. Its biggest 
drawback, and the reason the other policies were developed, 
is that it favors deep searches, meaning the corrected mol-
ecules may be quite different from the input molecules.

BFS is the benchmark for how close an output molecule 
can possibly be to an input molecule. Indeed, unless an input 
molecule is familiar to begin with the output molecule must 
be different. Greedy distance normalized familiarity, A* and 
UCT approach this ceiling quite well. Unfortunately, this 
group of policies also spends more resources on the search, 
oftentimes to no avail as the output molecule is frequently 
not entirely familiar.

MLR stands in between the very exploitative greedy 
familiarity and very explorative BFS-like policies. In our 
opinion it achieves a good compromise between correct-
ing molecules within reasonable amounts of time while not 
straying excessively far away from the input molecule. As a 
control we evaluated replacing the MLR model with a con-
stant null model. Despite the null model fitting the training 
data well, it cannot extrapolate, leading to poor real world 
performance (Figure S3, Additional file 1).

To further understand the anatomy of the generated trees 
Fig. 10 depicts diagrams of the search trees resulting from 
correcting the same input molecule while using different 
selection policies. As can be seen the greedy f2 and MLR 
policies define narrower and deeper trees than BFS.

The chemical quality of the input molecules and the out-
put corrected molecules was assessed using the SAScore 
[30]. As can be seen in Fig. 11, applying random pertur-
bations to reasonable molecules makes them progressively 
harder to synthesize. Encouragingly applying the correction 

Fig. 8  Different ways of applying molecule auto-correction in molec-
ular design. It may be used as a final post-processing step of a mol-
ecule generator (A) or as an integral part of a molecule generator by 
injecting it into the molecule construction process (B)
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algorithm to these broken molecules largely recovers their 
synthesizability. As SAScores are rather crudes measures 
of synthesizability [50] we sought to confirm these find-
ings with retrosynthetic analyses [46]. Figure S5, Additional 
file 1 confirms that corrected molecules are indeed easier to 
synthesize, but for highly perturbed molecules the fraction 
of synthesizable molecules remains small after correction. 
The correction algorithm is tasked with finding a molecule 
that is simultaneously similar to reference chemistry and 
similar to the input perturbed molecule, which is by design 
dissimilar to reference chemistry. This is intrinsically a chal-
lenging task as both objectives are opposed. Moreover, since 
the retrosynthesis engine is imperfect the reported fraction 
of synthesizable molecules is underestimated, as exempli-
fied by less than 60% of the ChEMBL sample being deemed 
synthesizable.

If the user would like to apply the algorithm in a low 
throughput setting, perhaps as a final sanitization step for 
the output of a molecule generator (Fig. 8A), we recommend 
choosing an explorative policy that yields molecules closely 
related to the input. If resources are infinite, BFS is guar-
anteed to yield the optimal result, but its cost scales rapidly 

due to the combinatorial explosion of visited chemical states 
as the depth of the search increases (Figure S1, Additional 
file 1). UCT and A* are computationally more reasonable. 
While both explore approximately the same number of 
molecules during the tree search, UCT is computationally 
more efficient as vertices are selected by a fast tree traversal, 
whereas A* requires a priority queue to be maintained. The 
MLR policy is a viable alternative on tight budgets. The 
greedy f2 policy can be used as fallback should all afore-
mentioned policies fail to find solutions within reasonable 
amounts of time. We advise raising the ceiling on the maxi-
mum tree size as the one we chose for our benchmark is 
conservative. Since all molecules in the tree are stored in 
memory in practice the user will likely be limited by the 
available system memory (Figure S2, Additional file 1). 
Note that memory consumption will be higher when the 
input molecules are large.

As an example, we took molecules designed by a naive 
evolutionary algorithm during optimization tasks and 
attempted to correct them using different selection poli-
cies. A sample of incorrect molecules designed by the 

Fig. 9  Molecule correction benchmark results. The number of pertur-
bations applied to the input molecule is shown on the x axis. The vio-
lin plots display the density of output molecules’ properties and the 
cost to generate them. For the UCT policy we only display the results 

of using the optimal coefficient c = 0.5. Results for the remaining c 
values can be found in Figure S4, Additional file 1. Note that the tree 
size was limited to a maximum of 25,000. Timings are given for a 
single-threaded workload on an AMD Epyc 7452 CPU @ 2.35 GHz
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Fig. 10  Diagrams of search 
trees resulting from trying to 
correct the same input molecule 
(OOC1[C]2#S1C2) using dif-
ferent selection policies. Nodes 
are color coded according to 
their discovery order, with red 
and blue being the first and 
last nodes to be discovered 
respectively. The root node is 
shown as a large red node, and 
the solution node is shown as a 
large blue node
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evolutionary algorithm as well as their corrected counter-
parts are shown in Fig. 12.

Unfortunately, the molecules’ fitness, as assessed by the 
optimization task’s objective function, was degraded by the 
correction procedure (Fig. 13). While all policies performed 
reasonably well, fitness was preserved best using the explicit 
objective preservation selection policy. Further analysis 
revealed that fitness degradation was most pronounced in 
benchmarks whose scores depend on the presence of spe-
cific and fragile chemical features (Figure S6, Additional 
file 1). As one might expect the correction process can dis-
turb these features which negatively affects the score. For 
a more hands-on approach to objective preservation, one 
could define molecular constraints to preserve key chemical 
features. If fitness cannot be preserved during the correction 
procedure through any means we recommend enforcing mol-
ecule validity throughout the construction process instead 
[16, 17, 36].

If the user intends to apply molecule correction itera-
tively to very large quantities of molecules, it is advisable 
to use a cheap and exploitative policy such as the greedy 
familiarity policy. While output molecules may not closely 

resemble input molecules, sometimes this is not of great 
importance, and sometimes it may even be beneficial. Con-
sider a molecular design algorithm that iteratively perturbs 
molecules to optimize some objective function. One could 
attempt to correct every intermediate molecule as part of 
the main loop (Fig. 8B). In this case the correction would 
act as an integral part of the perturbation itself, essentially 
increasing the step size of the perturbation. This may help 
the algorithm in escaping local fitness minima. Even if the 
correction process decreases the input molecule’s fitness, the 
optimization algorithm would presumably correct for this 
by discarding the molecule, reverting to an earlier stage, or 
focusing its attention elsewhere. It should also be noted that 
if one were to correct iteratively the distances traversed by 
correction would match those of input molecules with a sin-
gle perturbation, which are not as dramatic as those observed 
for highly perturbed input molecules (Fig. 9). Occasionally 
the correction process may effectively undo the effect of the 
perturbation that preceded it. While we do not anticipate this 
to be a large concern for most applications one could prevent 
it from happening using constraints.

Fig. 11  Shift in SAScore distributions associated with molecule 
auto-correction using the MLR selection policy. Lower SAScores are 
indicative of an easier synthesis. The “0 perturbations” distribution 

corresponds to the non-perturbed ChEMBL subset on which the per-
turbed molecules were based
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Fig. 12  Examples of molecules designed by a naïve evolutionary 
algorithm (left) and their corrected counterparts (right). The MLR 
selection policy and a chemical dictionary with environment radii 
of 2 were used for correction. A was designed during the Perindo-

pril MPO benchmark, B was designed during the Amlodipine MPO 
benchmark, and C was designed during the Sitagliptin MPO bench-
mark

Fig. 13  Correction algorithm’s effect on the GuacaMol benchmark scores using different selection policies. Points below the diagonal corre-
spond to molecules becoming less fit. Molecules that were already correct are not included as their score would not change
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To demonstrate the latter approach, we injected the cor-
rection algorithm into the aforementioned evolutionary 
algorithm (Fig. 8B). The greedy familiarity policy with a 
maximum tree size of merely 100 was chosen to limit com-
putational expenses. Figure 14 shows that injecting mol-
ecule correction into existing molecule generators is a viable 
strategy to design molecules that are both fit and easier to 
synthesize compared to unconstrained molecular design. It 
should be noted that correction-associated synthesizability 
improvements are meager due to the GuacaMol benchmark-
ing suites’ scoring functions being biased towards synthe-
sizable molecules [3, 36]. Interestingly, iterative correction 
yielded better results than attempting to enforce environ-
ment correctness through molecular construction constraints 
(Fig.  14), and it did so consuming less computational 
resources (Figure S7, Additional file 1). We hypothesize that 
the correction procedure, being unlinked from the objective 
function, may drag molecules out of local fitness minima 
aiding the optimization algorithm in the search towards the 
global minimum.

For completeness’ sake the above experiments and anal-
yses were repeated for atomic environments of radius 2. 
Under these conditions the correction injection approach 
failed to improve the synthesizability of the designed mol-
ecules, likely because the maximum tree size of 100 is 
insufficient to find molecules that satisfy the more stringent 
requirements (Figure S8, Additional file 1).

It should be stressed that given the same input molecule 
not all policies will generate the same output molecule 
(Fig. 15). It might be of interest to apply the algorithm with 

different policies and a posteriori select the most desirable 
output.

An unintended consequence of our expansion policy is 
the “carbonization” of input molecules. Perturbations most 
likely to increase the familiarity of a molecule are prior-
itized. As carbon is the backbone of organic chemistry, 
including our reference library of ChEMBL [10], substitut-
ing other elements with carbon is preferred by the algorithm.

We also encountered cases where certain selection poli-
cies would trigger the growth of long alkane chains, par-
ticularly exploitative policies such as the greedy f1 policy 
(Fig. 16, Figure S9, Additional file 1). We would like the 
correction process to modify existing chemical features. 
However, a trivial way of maximizing the f1 familiarity is by 
adding new familiar chemical features like alkanes (Eq. 3). 
This is a classic case of a search algorithm finding unin-
tended ways to exploit the objective function. Frivolously 
adding carbons has been described previously as a strategy 
employed by algorithms to cheat their way to good bench-
mark results, be it by artificially inflating molecular diver-
sity [4] or reaping low-hanging scoring function rewards 
[26, 51]. The easiest solution to the issue is to maximize 
the f2 familiarity instead (Eq. 4). While this prevents alkane 
growth, the search algorithm may occasionally still find it 
advantageous to introduce extraneous carbons as buffers 
between heteroatoms (Fig. 16). Correct heteroatom arrange-
ments are tied to specific functional groups. Given a for-
eign functional group the path of least resistance may be to 
break apart said group as opposed to rearranging its atoms. 
The best carbonization remedy is to choose an explorative 

Fig. 14  GuacaMol bench-
mark scores and SAScores 
of molecules designed by 
an evolutionary algorithm. 
Higher benchmark scores and 
lower SAScores are better. The 
objective preservation policy 
was used for post-processing. 
Unconstrained design refers 
to liberal modification of the 
molecular graph and the design 
of (likely) invalid molecules. 
All other approaches strive to 
design molecules with familiar 
circular atomic environments of 
topological radius 1 but achieve 
this goal in different ways. 
Constrained design refers to 
the use of molecular construc-
tion techniques that prevent the 
creation of undesirable chemical 
features. **: p < 0.01, ***: 
p < 0.001
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Fig. 15  Example input molecules and their corrected counterparts using the greedy  f2 and MLR selection policies
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selection policy. Should this not be an option the user may 
choose to disable atom insertions as a perturbation or specify 
constraints on which parts and/or attributes of the input mol-
ecule should be preserved by the correction algorithm.

While it is possible to post-process molecules from arbi-
trary sources, it might not be possible to integrate the cor-
rection process into all molecule generators. We have shown 
how to inject it into a graph-based evolutionary algorithm, 
and we anticipate equivalent implementations and benefits 
being achievable for any molecule generators that iteratively 
modify molecular graphs. Integration opportunities with 
alternative generators are more nuanced. The algorithm’s 
input is a molecular graph. Our implementation is based 
on the RDKit [52], which means that molecules must be 
parsable by the RDKit to be correctable. This precludes the 
use of ill-formed SMILES [21]. Ill-formed SMILES can be 
the product of malfunctioning generative models. They may 
also be an intermediate state of generative recurrent neural 
networks [26]. In the latter case correction would have to 
be deferred until the SMILES string has been fully formed, 
potentially playing a role in sanitizing molecules prior to 
their objectives being evaluated. Substituting SMILES for 
a more robust line notation such as SELFIES [23] whose 
intermediate strings are also valid would enable the “auto-
correct” process to behave more as a molecule “auto-com-
plete”. In any case the correction process would play a role 
in steering the chemical space search. Whether this would 
antagonize or synergize with the model’s inherent guidance 
remains to be explored.

Caution should be applied when employing molecule 
generators that rely on the similarity principle, for they 
amplify existing chemical biases in data due to prior art 
data conditioning future data collection [17, 53]. This can 
have detrimental effects on chemical novelty. The problem 
is compounded by building pipelines of tools relying on the 
same principle, as we do in this work. We are aware this is 
suboptimal, but in absence of competing methods grounded 
on physical first-principles, chemical bias amplification pos-
tures itself as a necessary evil.

One area worth revisiting in the future is the way in which 
correctness is assessed. Currently molecular keys are consid-
ered either foreign or familiar, depending on their frequency 
in the chemical dictionary. While the frequency threshold 
separating both categories can be tweaked, it would be pref-
erable to treat familiarity as a frequency-dependent continu-
ous variable. We also believe there is potential in further 
development of selection policies. The policies explored 
herein rely on crude heuristics. We can draw inspiration 
for policy design from other fields where tree searches are 
used. Synthesis planning in particular has recently witnessed 
major breakthroughs thanks to machine learning augmented 
policies [54, 55]. We believe that similar methods could be 
applied here to better direct the search, reducing the risk 
of missing good solutions as well as the cost to find said 
solutions.

Fig. 16  Molecule carbonization examples. The greedy  f1 selection 
policy exploits the scoring function by growing long alkane chains. 
The other selection policies cannot exploit the scoring function in the 

same way, but the expansion policy still may opt to substitute heter-
oatoms with carbons or to separate heteroatoms by inserting carbons 
between them
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Conclusions

We present an algorithm that can identify and fix problems 
within molecular graphs. It is implemented as a tree search 
that iteratively modifies input molecules until it yields a 
correct molecule. Strategies to minimize the length of the 
search and maximize the similarity between input incorrect 
and output corrected molecules were developed. To the best 
of our knowledge this is the first algorithm of its kind, open-
ing the door to novel workflows in molecular design. The 
algorithm can be used to post-process the output of molecule 
generators, possibly salvaging molecules that would have 
otherwise been discarded due to chemical quality concerns. 
It may also be integrated into faulty molecule generators 
to patch some of their shortcomings or even augment their 
capabilities. Ultimately, it enables researchers to delegate 
chemical quality assurance to the algorithm instead of engi-
neering new systems from scratch. We hope the algorithm 
will economize computational and human resources in 
molecular design.
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