
Kerstjens and De Winter
Journal of Cheminformatics (2022) 14:3
https://doi.org/10.1186/s13321-022-00582-y

RESEARCH ARTICLE

LEADD: Lamarckian evolutionary algorithm
for de novo drug design
Alan Kerstjens and Hans De Winter*

Abstract

Given an objective function that predicts key properties of a molecule, goal-directed de novo molecular design is a
useful tool to identify molecules that maximize or minimize said objective function. Nonetheless, a common draw-
back of these methods is that they tend to design synthetically unfeasible molecules. In this paper we describe a
Lamarckian evolutionary algorithm for de novo drug design (LEADD). LEADD attempts to strike a balance between
optimization power, synthetic accessibility of designed molecules and computational efficiency. To increase the likeli-
hood of designing synthetically accessible molecules, LEADD represents molecules as graphs of molecular fragments,
and limits the bonds that can be formed between them through knowledge-based pairwise atom type compatibility
rules. A reference library of drug-like molecules is used to extract fragments, fragment preferences and compatibility
rules. A novel set of genetic operators that enforce these rules in a computationally efficient manner is presented.
To sample chemical space more efficiently we also explore a Lamarckian evolutionary mechanism that adapts the
reproductive behavior of molecules. LEADD has been compared to both standard virtual screening and a comparable
evolutionary algorithm using a standardized benchmark suite and was shown to be able to identify fitter molecules
more efficiently. Moreover, the designed molecules are predicted to be easier to synthesize than those designed by
other evolutionary algorithms.

Keywords: De novo drug design, Evolutionary algorithm, Synthetic accessibility, Fragment-based, Graph-based

Graphical Abstract

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Journal of Cheminformatics

*Correspondence: hans.dewinter@uantwerpen.be
Department of Pharmaceutical Sciences, Faculty of Pharmaceutical,
Biomedical and Veterinary Sciences, University of Antwerp,
Universiteitsplein 1A, 2610 Wilrijk, Belgium

http://orcid.org/0000-0002-4450-7677
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-022-00582-y&domain=pdf

Page 2 of 20Kerstjens and De Winter Journal of Cheminformatics (2022) 14:3

Introduction
Many computational drug discovery projects employ vir-
tual objective functions (also termed fitness or scoring
functions) to predict a molecule’s properties of interest,
including its biological activity. In virtual screening (VS)
one evaluates the objective function for all molecules in
a virtual library to find the most promising ones. Com-
monly the molecules being screened are either commer-
cially available [1] or predicted to be easy to synthesize
[2, 3], enabling a fast transition from in silico to in vitro
studies.

However, given that even the largest virtual librar-
ies [2, 4] dwarf in size compared to drug-like chemical
space, which is commonly cited to contain somewhere
between 1023 and 1060 [5–7], it’s unlikely that the library
will contain the most active molecules possible. Prefer-
ences for certain chemotypes and synthetic reactions [8,
9] often make their way to virtual libraries, leading to a
small and non-uniform coverage of chemical space [10,
11]. This, coupled to the fact that publicly available librar-
ies may have been screened previously or even contain
patent-protected molecules, raises concerns about a lack
of chemical novelty. Last but not least, the enumeration,
storage, maintenance and screening of virtual libraries is
a resource intensive process.

Computational de novo drug design (DNDD), that is,
the computational design of molecules without a prob-
lem-relevant molecular starting point, has the potential
to solve some of these problems. The traditional approach
to DNDD [12], sometimes termed goal-directed design
[13], is the progressive construction or modification of
a molecule to optimize the value of a fitness function,
according to some optimization algorithm. While this
approach can succeed at finding highly fit molecules effi-
ciently, if applied naively the designed molecules tend to
be hard to synthesize [13, 14]. Different solutions have
been applied to tackle this problem.

Some solutions revolve around the use of synthetic
accessibility (SA) metrics. These metrics may have to be
calculated many times throughout the design process,
often limiting the user to rather crude rules [15, 16] or
heuristics [17–19] and precluding the use of more relia-
ble retrosynthetic analyses [20, 21]. Post-hoc filtering [22,
23], while simple and modular, is computationally inef-
ficient as it might discard solutions in which significant
amounts of costs were already sunk. Employing the SA
descriptors as a heuristic score bias instead [14, 23] can
partially solve this problem. However, both approaches
create hard or soft boundaries within the search space
respectively. Given that the fitness landscape of a typi-
cal drug discovery project can be very rugged, this may
impede the discovery of good solutions. Alternatively,
one may attempt to optimize both the fitness and SA

simultaneously with multi-objective optimization algo-
rithms [24, 25]. Since these objectives may counteract
each other, the algorithm attempts to find suitable com-
promises between them, but it’s the decision-maker’s
responsibility to define which balances are desired or
acceptable.

A second group of approaches attempts to incorporate
some chemical awareness into the design algorithm itself.
Ways of achieving this include fragmentation/recom-
bination rules [26, 27] and simulating virtual chemical
reactions [28–30]. These have the advantage of consider-
ing SA implicitly as part of the molecular construction
process. The likelihood of such an algorithm succeeding
at designing SA molecules depends on how well it cap-
tures chemical reality. Typically, the better a construction
scheme resembles organic synthesis, the higher the SA of
the designed molecules, but also the computational cost
to find them. Reducing the number of bonds created by
the algorithm, for instance by using predefined multi-
atomic molecular fragments, can be an effective way of
increasing the SA of designed molecules while avoiding
expensive construction schemes.

More recently, generative models such as variational
autoencoders [31], recurrent neural networks [32] and
generative adversarial networks [33] have been applied
to DNDD. When trained on datasets of molecules with
some desirable properties, including synthesizability,
these models can suggest new molecules with similar
properties. These technologies have shown great promise
in designing synthetically feasible molecules [14]. How-
ever, the amount of available training data can hamper
the approach.

In this paper we describe LEADD, an evolutionary
algorithm (EA) for de novo drug design and optimization.
EAs have a rich history of being applied to DNDD [16,
24–27, 30, 34–39]. They draw inspiration from Darwin-
ian evolution and natural selection, stochastically breed-
ing a population of solutions through the use of genetic
operators (i.e. mutation and crossover). Over the course
of generations, the objective function exerts selective
pressure on the population driving it towards optimality.

LEADD designs molecules as combinations of molec-
ular fragments, bonded according to the topology of a
graph. Knowledge-based atom pair compatibility rules,
defining which fragments can be bonded and how, are
enforced by a novel set of genetic operators. Both the
fragments and compatibility rules are extracted from
a library of drug-like molecules, and the outcomes of
the genetic operations are biased according to the fre-
quency of the fragments in drug-like matter. Addition-
ally, a Lamarckian evolutionary mechanism adjusts the
future reproductive behavior of molecules based on the
outcome of previous generations. LEADD attempts to

Page 3 of 20Kerstjens and De Winter Journal of Cheminformatics (2022) 14:3

strike a balance between optimization power (OP), SA of
designed molecules and computational performance.

Methods
Fragment library creation
A virtual library, assumed to be representative of drug-
like chemical space, is fragmented to yield the fragments
employed by LEADD during the design process.

Within this context, a fragment is a connectivity-
encoding molecular subgraph of the source molecule
from which it was extracted. A connection is an object
describing the bond between two atoms and is direc-
tional by nature. It can be represented as a three-integer
tuple, where the integers describe the starting atom type,
ending atom type and bond type respectively. Bonds are
classified into either single, double or triple bond type
(aromatic bond types don’t occur since rings aren’t frag-
mented; see below). While any atom typing scheme may
be used, we have implemented into LEADD MMFF94
[40] and Morgan atom types. Morgan atom types derive
their name from the Morgan algorithm [41], a variant
of which is used in ECFP [42] and RDKit Morgan fin-
gerprints [43] to generate canonical atomic identifiers.
These atomic identifiers are 32-bit integers describing
the atom’s topological circular chemical environment of a
given radius r. Said integer is taken as the atom’s Morgan
atom type. For clarity, the examples and figures in this
paper use MMFF94 atom types.

We distinguish between connections, which are generic
objects describing the type of an atom–atom bond, and
connectors, which are specific instances of a connection
centered on a fragment’s atom. During molecule frag-
mentation, the bonds between the fragment’s molecu-
lar subgraph and its extra-fragment adjacent atoms are
recorded as connectors (Fig. 1).

For each molecule, fragmentation starts by isolating
ring systems from the acyclic regions. Rings pertaining
to the Smallest Set of Smallest Rings (SSSR) [44] are con-
sidered to be part of the same ring system if they share
at least one atom. Given the complexities of designing
drug-like ring systems, we decided to consider whole ring
systems as fragments. The remaining acyclic structures
may either be taken as fragments as a whole or subjected
to systematic fragmentation by extracting all possible
molecular subgraphs of a given size from them, with each
subgraph becoming a fragment (Fig. 1). Hydrogens are
treated implicitly. The size of the extracted subgraphs (s),
given in number of bonds within the subgraph, is pro-
vided by the user. When s = 0, single atom fragments are
generated. Fragments of different sizes can be combined
by specifying a range of sizes.

Two fragments are considered equivalent only if both
their molecular graph and connectors are the same. Both

attributes are encoded as canonical ChemAxon extended
SMILES (CXSMILES) [45] and molecular identity is
assessed as canonical CXSMILES identity.

The generated fragments, their connectors, frequen-
cies, sizes and other convenience information are stored
in a relational SQLite3 database [46] (Additional file 1:
Fig. S1). When a generated fragment is already present in
the database its frequency is incremented by one.

Connection compatibility rules
Fragment compatibility is defined at the connection level.
Two fragments can be bonded together if two of their
free connectors are compatible. Whether two connec-
tions are compatible is determined by a set of pairwise
and symmetric compatibility rules.

The compatibility rules are extracted from the con-
nections table of the fragment database according to a
user-specified compatibility definition. We employ two of

Fig. 1 Fragmentation example of two molecules. The input
molecules (A) are assigned MMFF94 atom types (B). Ring systems and
all possible subgraphs from the remaining linkers and side chains of
a given size (in this example s ϵ [0 .. 1]) are extracted as fragments (C).
The bonds that were cut to extract fragments become connectors,
and are represented as three-membered tuples in parenthesis. The
number in bold below each fragment is its ID

Page 4 of 20Kerstjens and De Winter Journal of Cheminformatics (2022) 14:3

those definitions, termed the “strict” and “lax” compati-
bility definitions. Both definitions are illustrated in Fig. 2.

According to the strict definition two connections
are compatible only if (a) their bond types are the same,
and (b) their atom types are mirrored (i.e. the start atom
type of one is the end atom type of the other and vice
versa). Consequently, only a single connection is compat-
ible with each connection. During molecule design this
entails that the connectivity of fragments to their flank-
ing atoms in their source molecules is preserved. In other
words, a fragment must be connected to atoms of the
same atom type as those that flanked the fragment in the
source molecule.

When following the lax compatibility definition two
connections are compatible if (a) their bond types are the
same, and (b) if the starting atom type of one has been
previously observed paired with the starting atom type of
the other in any connection. This definition expands the
connectivity scope from the fragment’s source molecule
to the entire source molecules pool. In other words, two
atom types can be connected if they have been observed
paired together in any of the database’s connections,
which means they were bonded in at least one of the
source molecules. As such, the strict compatibility defini-
tion is a subset of its lax counterpart.

Chromosomal representation and initialization
Molecules are represented internally as meta-graphs [38],
where each vertex is a molecular graph corresponding
to a fragment, and the edges describe which connectors
bind the fragments (Fig. 3). Due to the complexities of

designing drug-like ring systems we treat ring systems
as whole fragments, represented as a single vertex in the
meta-graph. However, while the genetic operators don’t
create cycles in the meta-graph, they would work on
existing cycles if one were to add a cyclization operator
in the future.

The meta-graph chromosome can be translated into
a single molecular graph by connecting the molecular
graphs of all fragments (Fig. 3). Thereafter, hydrogens
are added to satisfy all incomplete valences. For ele-
ments with more than one valid valence like sulphur or
phosphorus hydrogens are added up to the closest valid
valence.

Upon initialization, for true de novo drug design ran-
dom chromosomes are generated by successively com-
bining random fragments. However, in some instances
the user may want to perform molecule optimization
instead, starting from a known population of molecules.
In this case, it’s possible to convert regular molecular
graphs into meta-graphs by following the previously laid
out fragmentation procedure using single atom acyclic
fragments (s = 0). If any of the connections generated
during the fragmentation of starting molecules don’t
appear in the database, connection compatibility infor-
mation won’t be available for them and the molecule will
therefore be skipped.

Genetic operators
LEADD employs eight distinct genetic operators to mod-
ify the chromosome and generate offspring (Fig. 4). Some
of these operators have a peripheral and internal variant,
referring to the location of fragments on which they oper-
ate. Peripheral fragments are those connected to one or
less other fragments (vertex degree d ≤ 1), while internal
fragments are those connected to two or more fragments
(d ≥ 2). While peripheral operators are theoretically suffi-
cient to access the entirety of the search space, in practice
this relies on statistically unlikely sequences of opera-
tions, since to modify the core of the molecule one would
have to “backtrack” and remove all peripheral fragments
obstructing it. Hence, the algorithm would be very likely
to get stuck in local minima on the fitness landscape.

The function of peripheral variants is mostly self-
explanatory: peripheral expansions attach a fragment
sampled from the database to a free connector, while
peripheral deletions delete a peripheral fragment.

In internal expansions a fragment is inserted between
a target fragment and one or more of its adjacent frag-
ments. For this purpose, connectors involved in bonding
the target fragment to the adjacent fragments are consid-
ered free.

Fig. 2 Connection compatibilities of the connections in Fig. 1
according to the strict (A) and lax (B) compatibility definitions. Since
in the lax definition the end atom type is irrelevant it is omitted

Page 5 of 20Kerstjens and De Winter Journal of Cheminformatics (2022) 14:3

In an internal deletion an internal target fragment is
deleted. This is only possible if one of the fragments adja-
cent to the target fragment can “take its place” and bond
to the remainder of the adjacent fragments.

In a substitution a target fragment is replaced by a frag-
ment in the database. Connectors bonding the target
fragment to its neighboring fragments are deemed free.

Transfections derive their name from the correspond-
ing biochemical technique of inserting genetic material
into cells. Transfections are similar to substitutions in
that they replace one fragment with another, with the dif-
ference being that the replacement fragments are sourced
from the molecule population instead of the fragments
database. Hence, they exploit the internal variability of
the population, fulfilling a similar role to crossover oper-
ators in traditional genetic algorithms. We opted out of
traditional crossover operators because crossing over
graphs is non-trivial. Historically graph crossover opera-
tions have been implemented as exchanges of subgraphs
[10, 35, 37, 38], or of side chains around a maximum
common substructure [30, 47]. If we were to implement
one of these approaches it would have to operate on our

chromosomal meta-graph without infringing on the con-
nection compatibility rules. The former approach would
be error prone, whereas the latter assumes the presence
of a large common substructure, which is unlikely if the
fragments are diverse and the number of fragments is
large. While the transfection operator is less disrup-
tive than a crossover operator, the unidirectional flow of
genetic material in transfections is easier to implement,
guarantees the success of the operation and reduces the
time complexity from O(n2) to O(n) compared to a bidi-
rectional crossover.

Translations/rotations move a fragment from one posi-
tion and orientation to another within the same mol-
ecule. They operate similar to a deletion and expansion
in tandem. By inserting the fragment back in its starting
position but with a different orientation it can effectively
be rotated in place.

Lastly, for those scoring functions operating on 3D
molecular structures, a stereochemistry flip opera-
tor is available. This operator chooses a random chi-
ral atom or stereochemical double bond and inverts its
stereochemistry.

Fig. 3 Chromosomal representation of a molecule created through combination of fragments in Fig. 1 using the lax compatibility definition. a
Chromosomal meta-graph. Numbered vertices correspond to fragment IDs. Numbers between parenthesis represent connector tuples. Bonds
between connectors are represented as rectangles. b The chromosome with fragments shown as their molecular graphs. c Translation of the
chromosome to the molecule seen by the user

Page 6 of 20Kerstjens and De Winter Journal of Cheminformatics (2022) 14:3

Connection rules enforcement
LEADD’s genetic operators satisfy the connection com-
patibility rules by searching for fragments that can bond

simultaneously to a given combination of fragments.
Whether a specific query fragment fulfils the above con-
dition can be expressed as a Maximum Bipartite Match-
ing problem (MBPM). We construct the bipartite graph
by placing the query fragment’s free connectors in one
vertex set, and the fragments within the combination in
the other vertex set (Fig. 5). The edges between both ver-
tex sets are drawn according to the lax connection com-
patibility rules (Fig. 2B), with an edge representing that a
connection is compatible with a fragment. This MBPM is
then solved with a modified version of the Hopcroft-Karp
algorithm [48]. The standard version of the algorithm is
deterministic and always returns the same matching,
even if multiple matchings with the same cardinality
exist. By randomizing the order in which it iterates over
vertices and edges it returns a random maximum cardi-
nality matching instead. If the cardinality of the resulting
matching is equal to the number of fragments within the
combination, the query fragment is compatible with said
combination of fragments.

To find all fragments that could bond to a combination
of fragments one must interrogate all candidate frag-
ments separately, which entails solving MBPM multiple
times. This is computationally reasonable when the num-
ber of candidates is small, namely during internal dele-
tions, transfections and translations/rotations. However,
it becomes unreasonable for operations that sample frag-
ments from the large fragments database, namely expan-
sions and substitutions.

In those cases, we solve the problem through Multiple
Set Intersection (MSI). Before LEADD is executed we
precompute which fragments are compatible with each
connection according to the strict connection compat-
ibility rules and store their IDs in sets (Fig. 6A). Since a
connection combination may have repeats of the same
connection, the compatible fragment IDs are stored
stratified according to how many instances of compatible
connections they have. If a fragment is compatible with n
instances of a connection it is also compatible with 1 to
n−1 instances. To be able to control the number of ring
fragments within the designed molecules, fragments are
also stratified according to whether these are cyclic or
acyclic.

At runtime these arrays are loaded, and the list of frag-
ments compatible with a combination of connections is
calculated as the intersection of the fragment IDs com-
patible with each of its connections separately (Fig. 7).
Note that since fragments may have more than one free
connector, if we wish to find fragments compatible with
a combination of fragments, we must define all unique
combinations of their free connectors and solve the MSI
problem for each of them. The final result is the union of
all resulting sets.

Fig. 5 MBPM constructed to query whether a hypothetical fragment
with a given set of connectors (left) is compatible with a combination
of fragments (right). Black and orange edges represent compatibility
relationships. The solution to the MBPM (i.e. the matching) is
shown as the orange highlighted edges. Since the cardinality of
the matching is equal to the number of flanking fragments our
hypothetical fragment is compatible

Fig. 4 Illustration of the resulting chromosomes after applying each
of the eight genetic operators to the chromosome given in Fig. 3a

Page 7 of 20Kerstjens and De Winter Journal of Cheminformatics (2022) 14:3

The MSI connection-fragment compatibilities must
be computed using the strict connection compatibility
definition to ensure that the same connector doesn’t con-
tribute to a fragment showing up in more than one set of
compatible fragments. Because of this, the MSI approach
returns a subset of all fragments that would be deemed
compatible according to the MBPM approach (Fig. 6).
Nonetheless, the final orientation of fragments retrieved

with the MSI approach can still be determined through
MBPM.

Operation outcome sampling
In the event that an operator finds multiple suitable
operation outcomes a random one is chosen, typically
through roulette wheel selection. For expansions, dele-
tions and substitutions the weight W of a fragment F is
calculated based on its frequency q in the database and
its size N, in numbers of heavy atoms, according to the
following equation:

where the exponents γ and λ are user parameters. γ
determines how much the fragment selection should
be guided by the fragment frequencies, with the default
being γ = 1. If the user wishes true random fragment
selection this can be done by setting γ = 0. λ is a size bias-
ing term intended to be used when mixing fragments
of different sizes. For efficiency reasons they are precal-
culated and stored alongside the connection-fragment
compatibilities (Additional file 1: Fig. S2).

(1)WF = q
γ

F · N �
F

Fig. 6 Connection-fragment compatibilities of the fragments in Fig. 1 according to (a) the strict compatibility rules and (b) lax compatibility rules,
as described in Fig. 2. Fragment weights are omitted for clarity purposes (Additional file 1: Fig. S2). Fragments are stratified according to their
cyclicity, and in the case of the strict compatibility definition (a) also according to how many instances (n) of the connection the fragment has. In
(b), “e” denotes any ending atom type. Note that in (a) higher strata are subsets of the lower strata, and that (a) is a subset of (b)

Fig. 7 Venn diagram of the multiple intersection result for acyclic
fragments compatible with the connections combination [(1,1,1),
(1,1,1), (7,3,2), (37,3,1)], using the precalculated compatible fragments
according to the strict compatibility definition (Fig. 6a)

Page 8 of 20Kerstjens and De Winter Journal of Cheminformatics (2022) 14:3

For transfections the weight is calculated following
the same formula but with the score S of the fragment’s
owner molecule R as an additional variable term:

where ζ is a user specified parameter signifying the trans-
fection bias towards fragments contained in high scoring
molecules.

The translation/rotation and stereo flip operators select
operation outcomes through uniform random sampling
instead.

Cyclicity control
Fragment identity comprises both the molecu-
lar graph and connectors. Generally, the number
of unique fragments increases with (1) the size of
the fragments and (2) the atom type and connector
diversity (Additional file 1: Table S1). Differences in
fragmentation procedure between acyclic and cyclic
regions of source molecules can cause imbalances in
the number of unique fragments, as well as their fre-
quencies, which can lead to fragment sampling biases.
Since cyclic fragments tend to outnumber their acy-
clic counterparts (Additional file 1: Table S1), if frag-
ments were sampled uniformly (γ = 0, Eq. 1) it would
be more likely to sample cyclic fragments. Conversely,
under weighted sampling (γ > 1), and when defining
acyclic fragments as subgraphs of s > 0, certain acy-
clic atoms are represented in more than one fragment.
Since ring systems aren’t fragmented, this causes an
overrepresentation of acyclic atoms in the fragment
frequencies with respect to the cyclic ones. If these
factors aren’t accounted for during fragment sam-
pling, we risk designing either very rigid or very flex-
ible and non-druglike molecules.

To circumvent this issue the genetic operators with
the capacity to modulate the number of ring atoms in
a molecule (Nr), namely expansions, deletions, substi-
tutions and transfections, decide whether and how Nr
ought to be changed prior to selecting a suitable acy-
clic or cyclic fragment to do so, according to the cur-
rent Nr.

How the operator will modulate Nr is based on the
probabilities returned by up to two functions operat-
ing in tandem. In first instance, a Gaussian function
describes the probabilities of keeping Nr constant.
For expansions and deletions this function suffices
to decide how to modulate Nr. However, for substitu-
tions and transfections, if in the preceding step it was
decided to change Nr, a second logistic function returns
the probability of increasing Nr. Further details can be
found in the supplementary material.

(2)WF = q
γ

F · N �
F · S

ζ

R

Lamarckian evolution guidance
Given that the database fragment weights are static, so are
the likelihoods of genetic operation outcomes, regardless
of whether the same or similar operations proved benefi-
cial or not in the past. In an attempt to improve the effi-
ciency of the algorithm, as an extension, we conferred it
with a certain ability to “learn” from the outcomes of pre-
vious genetic operations in hopes of increasing the likeli-
hood of carrying out productive operations in the future.
To this end, each connector within a molecule is endowed
with a pair of arrays: one storing the IDs of compatible
fragments F and one storing their corresponding weights
WF. The weights array is initialized to a copy of the data-
base fragment weights (Additional file 1: Fig. S2), but it’s
free to change with each generation.

During evolution, a copy of a parent molecule P is sub-
jected to a genetic operation, targeting some fragment V,
to generate a child molecule C. The score S of C is com-
pared to that of P:

Molecules keep track of which fragments were placed
and/or removed from each connector during the opera-
tion. For each connector involved in the operation, based
on the nature of the operation and its outcome (Table 1),
the weights array of both the P and C’s connectors are
modified according to the following expression:

where g is the reinforcement sign, l is a user-specified
reinforcement rate and TcFV is the Tanimoto topological
similarity coefficient of fragments F and V according to
ECFP4 fingerprints [42]. For performance reasons, all pair-
wise fragment similarity coefficients are precalculated and
stored as a square symmetrical matrix in a HDF5 file [49].

Whether the change in weight is positive or nega-
tive (g) depends on the nature of the operator and the
change in score (Table 1). LEADD maximizes strictly
positive scores. The general principle is that if a newly

(3)�S = Sc − SP

(4)WF = WF ·
(

1+ g · l · TcFV
)

Table 1 Learning rate sign of Eq. 4 for bond creations (i.e.
attaching a fragment to a connector) and destructions (i.e.
deleting a fragment from a connector) based on the score
change associated with the operation

Operation ΔS Learning
rate sign
(g)

Bond creation > 0 + 1

≤ 0 − 1

Bond destruction > 0 − 1

≤ 0 + 1

Page 9 of 20Kerstjens and De Winter Journal of Cheminformatics (2022) 14:3

placed fragment at a given connector increased the mol-
ecule’s score (i.e. improved the score), the weights of
similar fragments are increased, whereas if it stayed the
same or decreased, the weights of similar fragments are
decreased. The opposite paradigm is true for fragments
being removed from a given connector.

This guided evolution serves two purposes. On one
hand it can accelerate convergence by focusing the sam-
pling on fragments that have been shown to be associ-
ated with good scores. On the other hand, since weights
of similar fragments are decreased also when the score
doesn’t change, given enough time it could help the algo-
rithm in escaping local fitness minima.

One could interpret a molecule’s connectors’ weights
arrays as its reproductive behavior or its memory regard-
ing which chemotypes at which positions are linked to
better scores. Parents adapt their reproductive behavior
to increase the likelihood of generating fit offspring based
on the outcome of their previous reproductive events.
Hence, the reproductive behavior is an acquired trait.
This, coupled to the fact that the connector arrays are an
integral part of the chromosome, and therefore inherited
by the offspring, constitutes a Lamarckian evolutionary
mechanism.

Evolutionary algorithm
Over the course of a number of generations (or until
some convergence criterion is met) the molecules within
the population are bred to generate offspring. Each
generation a number of parent molecules is chosen to
generate an equal number of child molecules. Parents
reproduce asexually, and the same parent may reproduce
more than once in the same generation. A copy of the
chosen parent is subjected to a genetic operator to yield
the child molecule. Molecules are chosen to be parents
through fitness proportionate selection, with the weight
of a molecule R being given by Eq. 5. Note that the ζ
parameter takes the same value as in Eq. 2.

Optionally, the user may enforce population topologi-
cal diversity through means of an internal similarity filter.
The topological similarity between two molecules is cal-
culated as the Tanimoto coefficient between their ECFP4
fingerprint [42]. If the similarity of a child molecule to
any of the current members of the population surpasses
a given threshold, the child is discarded. Otherwise, it’s
added to the population.

The child molecules are scored, and a specified number
of best scoring molecules within the population, includ-
ing parents, is retained. If guided evolution is enabled the
connector weights are adjusted based on the change in
score caused by the operation. Lastly, the surviving mol-
ecules are fed to the next generation of the algorithm.

While the use of fragments and connection compat-
ibility rules is meant to reduce the likelihood of designing
synthetically unfeasible molecules, this may not be suffi-
cient to achieve this goal. For users wishing to consider
synthetic accessibility on a higher level a SAScore [18] fil-
ter and heuristic score modifier [14] are provided.

A flowchart of the algorithm can be found in Addi-
tional file 1: Fig. S4.

API
LEADD is scoring function agnostic, the only
requirements being strictly positive floating point
molecule scores, with higher scores being better. The rec-
ommended way of coupling a problem-specific scoring
function is using the C++ or Python API. An instance of
a molecule design class is initialized using a settings file
and output directory path. This class has member func-
tions to expand the population with children, get their
SMILES, set their scores, and wrap up the generation by
selecting the fittest individuals. A Python example of how
these functions can be used in conjunction with a user
scoring function ScoreMolecule() is shown below.

(5)WR = S
ζ

R

leadd = LEADD(settings_file, output_directory)
while not leadd.TerminationCriteriaMet():

leadd.GenerateChildren()
for molecule in leadd.GetPopulation():

if molecule.IsChild():
smiles = molecule.GetSanitizedSMILES()
score = ScoreMolecule(smiles)
molecule.SetScore(score)

leadd.SelectivePressure()

Page 10 of 20Kerstjens and De Winter Journal of Cheminformatics (2022) 14:3

Benchmark
LEADD’s performance was evaluated with the goal-
directed GuacaMol benchmark suites [13]. Specifically,
we used the “trivial” and “version 2” (V2) benchmark
suites. Briefly, these benchmark suites consist of 7 and
20 objective functions respectively that assign scores
between 0 and 1 to populations of molecules. The over-
all score of the benchmark suite can be calculated as the
sum of all individual benchmark scores. We chose to
include the trivial benchmarks in our analysis because
the majority of the V2 objective functions point towards
topologies of known and synthetically feasible drugs.
Hence, the objective functions implicitly provide some
notions of drug-likeness, potentially occluding some SA
issues.

For standardization purposes we used GuacaMol’s
training set, which is a subset of ChEMBL [50], as frag-
mentation input. Fragment databases were created for
each investigated combination of fragmentation and
atom typing scheme (Additional file 1: Table S1).

The benchmark suite was used to find a set of reasona-
ble default parameters for LEADD. Given the large num-
ber of parameters an exhaustive parameter exploration
was unfeasible. We resorted largely to a trial-and-error
approach. Some parameters, including the population
size and convergence criteria were fixed. Additionally,
since LEADD requires a guess of the number of ring
atoms in the ideal solution, where possible, we used
the benchmark goals to set reasonable values for these
parameters (Additional file 1: Table S2). The rest of the
parameters were sorted according to their perceived
importance. For parameters assumed to be uncorrelated
we tested multiple values for each one and fixed it to the
value that yielded the best results. If this wasn’t the case,
we evaluated combinations of the correlated parameters
in a multi-factorial design.

Ten replicas were ran for each combination of settings.
Benchmark scores and SAScores of designed molecules
were taken as OP and SA metrics respectively. ChEMBL
[50] feature counts were used for SAScore calculations.
For statistical analysis the results of all benchmarks were
pooled per setting. Since OP was found to be distrib-
uted non-normally, differences in it were evaluated with
non-parametric statistical tests: either the Wilcoxon-
Mann–Whitney U-test [51] or the Kruskal–Wallis [52]/
Schreirer-Ray-Hare [53] H-test followed by pairwise
Conover-Iman tests [54] with Šidák correction [55]. SAS-
cores were distributed normally and analyzed with t-tests
or one- or two-way analysis of variance (ANOVA) with
interaction followed by Tukey’s Honestly Significant Dif-
ferences test. α = 0.05 was taken as significance level and
family-wise error rate (FWER) for all tests.

LEADD’s performance was compared to that of GB-GA
[35], an atom- and graph-based genetic algorithm for
molecular design which has previously been shown to
be a powerful optimizer [13, 23], and a standard virtual
screen of GuacaMol’s training set using the benchmark’s
objective function. GB-GA’s mutation rate was set to
the default 0.01. Both algorithms used a population size
of 100 and were granted a maximum of 10,000 genera-
tions. Evolution terminated prematurely after a number
of generations without improvements in the population’s
scores: 1000 for LEADD and 5 for GB-GA. We explored
granting GB-GA 1000 generations without improvement
but found that its lack of convergence guards caused
the population diversity, and ultimately the benchmark
scores, to degrade during long runs.

Results and discussion
LEADD was found to be quite robust to changes in
most of its construction parameters, as different values
didn’t influence its performance greatly. As an exception,
LEADD was sensitive to the internal similarity thresh-
old since it’s the algorithm’s main premature conver-
gence guard (data not shown). LEADDs base parameters
can be found in Additional file 1: Table S3. Fragmenta-
tion parameters had larger effects on both OP and SA of
designed molecules.

Effect of atom typing scheme
One of the main questions we wanted to answer was if
the knowledge-based atom compatibility rules aided
the algorithm in designing SA molecules. To that end,
we measured the SAScores of molecules designed using
the MMFF and Morgan (r = 1 and r = 2) atom typing

Fig. 8 Comparison of designed molecules’ SAScore distributions
using different atom typing schemes. Includes molecules of all
benchmarks and replicas. Molecules with lower SAScores are
predicted to be easier to synthesize

Page 11 of 20Kerstjens and De Winter Journal of Cheminformatics (2022) 14:3

schemes. As a control, we included “dummy” atom types
(i.e. all atoms have the same atom type), whereby all con-
nections with the same bond order are compatible. All
tests used single-atom acyclic fragments (s = 0). Mol-
ecules with lower SAScores are predicted to be easier
to synthesize. Figure 8 shows that molecules designed
with Morgan atom types, regardless of the radius, have
lower SAScores than those designed with dummy or
MMFF atom types. Differences between all other pairs of
atom typing schemes were of little practical significance
(Additional file 1: Table S4). It’s interesting to note that
the mean SAScore values for Morgan atom types fall
well below 4.5, which has been suggested as a cut-off for
easy to synthesize molecules [19]. By contrast, the mean
SAScore values for dummy and MMFF atom types are
approximately 4.6.

Unfortunately, we also noted that Morgan atom types
were associated with significantly lower OP compared to
dummy and MMFF atom types (Fig. 9). The differences
between dummy and MMFF atom types and between
Morgan atom types of different radii were not statistically
significant (Additional file 1: Table S5).

Taken together these results suggest that the choice of
atom typing scheme defines a trade-off between OP and

SA. The chemical diversity of atomic environments is
vast, and classifying them into a small number of atom
types means that atom typing schemes are degenerate,
much like the human genetic code. The number of dis-
tinct atom types can be taken as an approximate meas-
ure of the scheme’s degree of degeneracy. LEADD tries
to replicate the molecular connectivity of molecules seen
in a library of drug-like molecules, but if a very degen-
erate atom typing scheme mischaracterizes this con-
nectivity the algorithm’s ability to replicate it falters. In
our fragment databases we recorded 64 MMFF, 14,811
Morgan (r = 1) and 381,252 Morgan (r = 2) atom types
(Additional file 1: Table S1). Unique Morgan atom types
greatly outnumber their MMFF counterparts, explaining
the better SA associated with them.

The atom typing scheme’s degree of degeneracy also
defines the observed OP-SA trade-off. LEADD consid-
ers two atom types to be compatible, and therefore suit-
able for bonding, if they have been observed bonded in
reference molecules at least once. Given the same set of
reference molecules, the probability of observing any
specific pair of atom types bonded is larger when the
number of distinct atom types is small. Consequently,
the more degenerate an atom typing scheme, the more

Fig. 9 LEADD optimization power comparison between atom typing schemes. Benchmark scores range between 0 and 1, with higher scores being
better. Boxes represent interquartile ranges (IQR), the black line within them medians and the whiskers Q ± 1.5IQR. Data beyond the whiskers are
considered outliers and represented as dots. Colored dots represent maximum benchmark scores

Page 12 of 20Kerstjens and De Winter Journal of Cheminformatics (2022) 14:3

promiscuous its atom types, in the sense that atom types
will be deemed compatible with a larger number of other
atom types. Ultimately, this also affects the number of
fragments that are compatible with each connection. In
the case of MMFF atom types, 85.96% of all fragments are
compatible with the average connection according to the
lax compatibility definition. This number drops to 1.53%
and 0.05% for Morgan (r = 1) and Morgan (r = 2) atom
types respectively. Even more dramatic differences are
observed when considering the strict compatibility defi-
nition (Additional file 1: Table S1). This highlights that
atom type promiscuity enables the algorithm to access a
larger number of states (i.e. molecules) from the current
state, aiding it in the escape of local fitness minima and
explaining the associated greater OP.

Out of the tested atom typing schemes, we believe
that for most use cases Morgan (r = 1) atom types rep-
resent the best OP-SA compromise. Other compromises
of interest may be achievable with alternative atom typ-
ing schemes. LEADD can be readily expanded to use
other atom typing schemes. For instance, one could col-
lapse Morgan atom types into a smaller number of atom
types with some type of hashing function. However, as
this would inevitably cause collisions, the hashing func-
tion would need to be locality sensitive to avoid merg-
ing completely unrelated atom types. An alternative
approach might be to cluster atomic environments and
use cluster assignments as atom types. This approach
could allow fine control over the OP-SA trade-off by
modulating the number of clusters. We would like to
remark however that the number of unique atom types
is only a good metric for atom typing degeneracy when
atomic environments are distributed uniformly across
atom types. This is likely to be the case for Morgan atom
types since they are calculated using hashing functions,
which are designed to distribute inputs uniformly over an
integer range, but may not be the case for other schemes.
Instead, it would be more appropriate to use metrics
that measure the information content of atom types (i.e.
within atom type atomic environment similarities).

Implications of compatibility binarization
LEADD’s approach to find suitable fragments for
genetic operators requires that connection compatibil-
ity be expressed as a binary property. However, it may
be argued that connection pairs are on a compatibility
spectrum based on the observed frequency of said pair:
if a pairing is observed thousands of times it’s more
compatible than if it’s observed just once, yet they are
deemed equally compatible. Consequently, infrequent
connections may misrepresent molecular connectiv-
ity. We regularly observed large disparities among com-
patible connection pairing frequencies and wanted to

measure the extent to which this is detrimental to the SA
of designed molecules. By default the MBPM approach
uses the lax compatibility definition, but this may be
changed to the strict definition. Under the strict com-
patibility definition each connection is compatible with
exactly one other connection, eliminating compatible
connection pairing frequency imbalances. We found no
practically significant differences in SAScore when using
the strict compatibility definition for MBPM as opposed
to the lax one (Additional file 1: Fig. S5). Considering that
a fragment’s connectivity is part of its identity, infrequent
connections are contained to infrequent fragments. Since
LEADD samples fragments with a probability propor-
tional to their frequency we hypothesize that, while the
binarization of connection compatibility does misrepre-
sent the molecular connectivity of the reference library,
this rarely manifests itself in designed molecules.

Effect of fragmentation scheme
The atom typing scheme degeneracy, the binarization of
connection compatibility, and other factors such as con-
nection compatibility being expressed only as pairwise
relationships, all contribute towards LEADD’s descrip-
tion of molecular connectivity being imperfect. Each
bond created by the algorithm has a probability of being
non-drug-like. While we have discussed approaches
to decrease this probability, an alternative approach to
improve the drug-likeness of designed molecules is to
reduce the number of bonds created by the algorithm.
This can be achieved using larger fragments. To prove
this we ran the benchmark using different types of acyclic
fragments: single-atom fragments (s = 0), fragments with
0 to 2 bonds (s ϵ [0 .. 2]) and whole side chains and linkers

Fig. 10 Comparison of designed molecules’ SAScore distributions
using different atom typing schemes. Includes molecules of all
benchmarks and replicas. Molecules with lower SAScores are
predicted to be easier to synthesize

Page 13 of 20Kerstjens and De Winter Journal of Cheminformatics (2022) 14:3

resulting from the deletion of ring systems. In general,
the SAScores of molecules designed using larger frag-
ments were lower than those designed using smaller frag-
ments (Fig. 10). While the SAScore differences between
s = 0 and s ϵ [0 .. 2] were almost negligible, using mono-
lithic acyclic fragments did lead to substantial improve-
ments in SAScore (Additional file 1: Tables S6, S7). It’s
interesting to note that the observed improvements in
SAScore were larger for dummy atom types than for
Morgan atom types, highlighting that the bonds created
when using Morgan atom types are more drug-like.

The use of larger fragments didn’t affect LEADD’s OP
when using dummy atom types. However, we did observe
significant improvements in OP when using large frag-
ments coupled with Morgan (r = 1) atom types (Fig. 11,
Additional file 1: Tables S8, S9). Genetic operations using
larger fragments are associated with bigger step sizes in
chemical space, which allows the algorithm to escape
local fitness minima. Because the number of chemical
states accessible from a given state is much smaller when
using Morgan atom types as compared to dummy atom
types, the probability of getting stuck in local fitness
minima is larger in the former case. This explains why a

bigger step size is beneficial for Morgan, but not dummy
atom types. It’s worth noting that the step size associ-
ated with larger fragments isn’t longer solely because of
the bigger number of atoms per fragment, but also due
to the greater degree of branching in larger fragments.
While we implemented internal operators that attempt to
mitigate this, there still is a risk that the algorithm may
design certain highly branched topologies that are diffi-
cult to modify with genetic operators without unwinding
the entire stack of operations. Since large fragments can
capture branched motifs as a single unit, the risk of this
happening is reduced. Future algorithms could improve
upon this by implementing operators that target entire
sections or branches of the meta-graph instead of a single
vertex.

Given that larger fragments improve SA and either
increase OP or don’t affect it, it’s tempting to conclude
that the use of large fragments is always preferable. How-
ever, it should be noted that the larger step sizes associ-
ated with big fragments also carry the risk of “jumping”
over good solutions. This can be partially overcome by
mixing fragments of different sizes (e.g. s ϵ [0.. 2]). A
more pressing issue is that the use of large fragments

Fig. 11 LEADD optimization power comparison between different combinations of atom typing and fragmentation schemes. Benchmark scores
range between 0 and 1, with higher scores being better. Boxes represent interquartile ranges (IQR), the black line within them medians and the
whiskers Q ± 1.5IQR. Data beyond the whiskers are considered outliers and represented as dots. Colored dots represent maximum benchmark
scores

Page 14 of 20Kerstjens and De Winter Journal of Cheminformatics (2022) 14:3

requires a very extensive and diverse library of fragments
to adequately represent chemical space. Besides dictat-
ing greater amounts of memory to store the pre-calcu-
lated compatible fragments, as the number of fragments
grows so does the size of the search space, and with it
the number of operations and generations necessary to
adequately explore it. For Morgan atom types, we believe
that the improved SA and OP tied to monolithic frag-
ments justify their use. However, for dummy atom types
we think that the minor SA improvements aren’t suffi-
cient justification.

Handling fragment numerosity
A large number of fragments also poses the question of
how to prioritize fragments to explore chemical space
efficiently. We opted to use the fragments’ frequencies
in drug-like matter as biasing weights to determine the
outcomes of genetic operations. In an attempt to improve
upon this, we also implemented a Lamarckian evolution-
ary mechanism that biases the exploration towards cer-
tain areas of the search space based on the outcomes of
previous operations. A similar concept was explored in
the particle swarm optimizer Colibree [56], where each
molecule has preferences towards certain fragments,
encoded as a floating point number array. In Colibree
these preferences apply to the entire molecule, which is
computationally more efficient and enables straightfor-
ward communication of preferences among molecules
within the swarm, but lacks the spatial resolution that
one would desire when working with structure-based
scoring functions. Our Lamarckian evolutionary mecha-
nism attempts to improve on this by assigning fragment
preferences to connectors instead. Unfortunately, with
the explored settings, the Lamarckian guided evolution
mechanism failed to significantly improve the optimiza-
tion power of the algorithm (data not shown). One pos-
sible explanation for the shortcomings of the approach
is that, given the large number of fragments (105–106
compared to the 7196 of Colibree), the number of gen-
erations for which LEADD runs (i.e. 1000–10,000) is
insufficient to resolve connector-fragment preferences.
The impermanence of connectors may exacerbate the
problem. When a fragment is deleted or substituted the
knowledge accumulated in its connector arrays is erased,
effectively resetting the progress of the Lamarckian evo-
lution. A potential solution could be mapping fragment
preferences to points in space instead, which also would
allow molecules to share their preferences among each
other. However, the observed slower runtimes and larger
memory footprints discourage us from exploring this
approach further.

Comparison of SA improvement approaches
LEADD also ships with more traditional means of
improving the SA of designed molecules, namely a simple
filter that deletes molecules with SAScores above a given
threshold and a SAScore-based heuristic score modifier
that biases the objective function towards molecules with
lower SAScores, as described by Gao and Coley [14]. As
a reminder, the SAScore is a composite metric based on
(a) how much the molecular connectivity of a molecule
resembles that of reference drug-like molecules (i.e. Fea-
tureScore) and (b) the number of synthetic nuisances
within that molecule, for example stereo centers, spiro-,
bridged- and macro-cycles (i.e. ComplexityPenalty).
Because the atom type approach to increase SA only
tries to improve the FeatureScore it can be of interest to
combine it with the SAScore filter or heuristic. We were
interested in comparing how these different approaches
to increase SA fare on their own. The parameters for the
SAScore filter (SAScore ≤ 4.5) and heuristic (µ = 2.23,
σ = 0.65) were taken from the literature, where they have
been described as effective means to design SA molecules
[14, 19]. Our results confirm that all approaches can be
used to design more SA molecules (Fig. 12, Additional
file 1: Table S10) and that, with the exception of the SAS-
core filter, this was accompanied by a significant loss of
optimization power (Fig. 13, Additional file 1: Table S11).
There appears to be an inverse correlation between SA
and OP, and the observed OP-SA compromises seem to
define a FeatureScore Pareto front (Additional file 1: Fig.
S6). However, it should be noted that each approach has
a different SA target. We didn’t manage to find SAScore

Fig. 12 Comparison of designed molecules’ SAScore distributions
using different SA optimization strategies. Includes molecules of
all benchmarks and replicas. Molecules with lower SAScores are
predicted to be easier to synthesize

Page 15 of 20Kerstjens and De Winter Journal of Cheminformatics (2022) 14:3

filter and heuristic parameters that replicate the SAScore
distribution of Morgan (r = 1) atom types. Hence, which
approach provides the best OP-SA trade-off, if any, is
inconclusive.

Comparison to other algorithms and virtual screening
Lastly, we wanted to compare LEADD’s performance
to that of GB-GA [35] and a VS of the GuacaMol vir-
tual library. In terms of OP, LEADD with dummy atom
types outperformed the VS in 26/27 benchmarks, with
the only exception being the Valsartan SMARTS bench-
mark which uses a binary scoring function ill-suited for
goal-directed optimization approaches. LEADD with
the use of dummy atom types is comparable to GB-GA,
in the sense that both are graph-based EAs with very
few restrictions on how atoms can be connected. Corre-
spondingly, the SA (Fig. 14, Additional file 1: Table S12)
and OP (Fig. 16, Additional file 1: Table S13) of these
two systems are comparable. The key difference between
both algorithms is that LEADD modifies molecules on a
fragment level as opposed to the atom level of GB-GA.
Although we paired dummy atom types with single-
atom acyclic fragments, ring systems are always treated
as monolithic fragments. We expected this to yield
improved SA and smaller OP, yet found the opposite.
LEADD has better OP than GB-GA, outperforming it in
18/27 benchmarks and performing equally well or bet-
ter in 23/27 benchmarks. We attribute this to the big-
ger step size associated with fragments and the internal

Fig. 13 LEADD optimization power comparison using different SA optimization strategies. Benchmark scores range between 0 and 1, with higher
scores being better. Boxes represent interquartile ranges (IQR), the black line within them medians and the whiskers Q ± 1.5IQR. Data beyond the
whiskers are considered outliers and represented as dots. Colored dots represent maximum benchmark scores

Fig. 14 Comparison of SAScore distributions between molecules
designed by LEADD and GB-GA and those found through a VS.
Includes molecules of all benchmarks and replicas. Molecules with
lower SAScores are predicted to be easier to synthesize

Page 16 of 20Kerstjens and De Winter Journal of Cheminformatics (2022) 14:3

topological similarity threshold to enforce population
diversity, giving it an edge at escaping local fitness min-
ima. It’s also possible that the same factors explain the
better SA of molecules designed by GB-GA. Most Gua-
caMol benchmarks incorporate topological similarity to
a reference drug-like molecule in their objective func-
tions, implicitly capturing some SA notions. Because of
LEADD’s internal similarity threshold only the best indi-
vidual within the population can assume the identity of
the reference molecule, whereas the rest are forced to
diverge from it. In GB-GA all individuals are allowed to
approach the target molecule as much as possible, ben-
efitting to a greater extent from the implicit SA target of
the objective function. Moreover, GB-GA doesn’t allow
the creation of SSSR cycles bigger than six-membered
rings whereas some of the fragments used by LEADD do
include bigger cycles. Since the SAScore incorporates a
macrocycle penalty this could account for some of the
observed differences. Ultimately, the magnitude of the
SA changes associated with the use of fragments, be it
cyclic or acyclic, are small (Additional file 1: Tables S7,
S12). This calls into the question the widespread practice
of fragment-based molecular construction as a means
to improve SA, and we hypothesize that its effectiveness
depends on how well in silico fragments and their assem-
bly rules correlate with ex silico reactants and chemical
reactions.

When using Morgan (r = 1) atom types and mono-
lithic acyclic fragments LEADD designs molecules with
much better SA than GB-GA (Fig. 14, Additional file 1:
Table S12). This is to be expected since GB-GA doesn’t
take SA into account intrinsically. However, it’s pos-
sible to design SA molecules with GB-GA by using the
previously discussed extrinsic SAScore-based heuristic
score modifier [14, 23]. Doing so yields a similar OP-SA
trade-off to the one observed for LEADD and the same
heuristic (Figs. 12, 13), strongly favoring SA over OP
(Additional file 1: Figs. S7, S8). The SA of molecules
designed by LEADD using Morgan (r = 1) atom types is
almost on par with those found by a VS (Fig. 14, Addi-
tional file 1: Table S12). We would like to remark that the
feature set we used to calculate SAScores was extracted
from ChEMBL [50], and that the screened GuacaMol
library is a subset of ChEMBL [13]. It’s therefore to be
expected that molecules found through VS have bet-
ter SAScores. Since SAScores are a rather crude way of
assessing SA, to confirm our findings we ran retrosyn-
thetic analyses on the top 10 scoring molecules of each
benchmark replica using AiZynthFinder [21] with the
ZINC [1] reactant stock and USPTO-derived reaction
template policy provided by the authors. Both LEADD
and GB-GA designed less synthesizable molecules than
those found by the VS, but when using Morgan atom

types LEADD designed considerably more synthesizable
molecules than GB-GA (Fig. 15). It’s worth noting that
only 60% of the molecules selected by the VS from the
ChEMBL subset were deemed synthesizable by the ret-
rosynthetic analyses. If we assume that all molecules in
ChEMBL are synthesizable this would suggest that we
might be underestimating the SA of molecules, including
those designed by the EAs.

Interestingly, we didn’t observe a statistically significant
difference in OP stochastic dominance between LEADD
with Morgan atom types and GB-GA (Additional file 1:
Table S13). Given that EAs are stochastic in nature, one
would typically run multiple replicas and keep the best
results. This justifies comparing maximum instead of
average benchmark scores. In terms of maximum score,
LEADD with Morgan atom types performed comparably
or better than GB-GA in 16/27 benchmarks and compa-
rably or better than the VS in 23/27 benchmarks (Fig. 16).
Crucially, LEADD performed better than GB-GA in the
Deco Hop and Scaffold Hop benchmarks, which are
arguably the most representative of real drug discovery
problems.

We would like to note that goal-directed design
employing structure-based scoring functions is associ-
ated with an additional set of challenges that isn’t posed
by the ligand-based GuacaMol benchmark suite, includ-
ing the handling of stereochemistry, pose inversion and
the typical bias of these scoring functions towards large,
hydrophobic and flexible molecules. Indeed, preliminary

Fig. 15 Fraction of top-10 scored molecules per replica synthesizable
by LEADD (with different settings), GB-GA and VS in N or less steps
using ZINC reactants and USPTO reaction templates, as assessed by
AiZynthFinder. Molecules requiring more than 8 synthetic steps are
considered not synthesizable

Page 17 of 20Kerstjens and De Winter Journal of Cheminformatics (2022) 14:3

results using OpenEye ROCS [57, 58] as LEADD’s scor-
ing function show a tendency towards designing large
and very cyclic molecules. This also makes it challenging
to compare 2D molecular design algorithms like LEADD
and GB-GA to their 3D counterparts [15, 22, 24, 39].

It’s also important to consider the amount of compu-
tational resources spent by each approach to achieve
its results. Figure 17 shows how an average EA replica
finds higher scoring molecules than a VS with a smaller
number of scoring function calls. While one should
keep in mind that it’s generally desirable to run multi-
ple EA replicas, EAs make better use of computational
resources than a VS, especially if evaluating the scoring
function is expensive. It’s also worth noting that LEADD,
despite its use of fragments, didn’t find solutions much
slower than GB-GA (Fig. 17). Naturally, there is an over-
head associated with the design algorithm. On a sin-
gle core of a Xeon E5-2680v2 CPU (2.8 GHz), LEADD
designed on average 272 mol/s. Assuming that about
 104–105 molecules must be designed to find good solu-
tions (Fig. 17) this corresponds to an overhead of just a
couple CPU minutes. For comparison GB-GA designed
98 mol/s. This difference in performance is mostly due to

implementation optimizations rather than due to algo-
rithmic differences since LEADD is considerably more
complex algorithmically. When using fast scoring func-
tions molecule generation can become the rate limiting
step. During the GuacaMol benchmark suite LEADD
generated molecules slower than they were scored in
25/27 benchmarks. On average, molecules were designed
eightfold slower than they were scored, with differences
exceeding 20-fold in some benchmarks. This showcases
the need for fast molecular design algorithms. Note that
the reported values are averages, and that execution
times depend heavily on the number of possibilities the
algorithm has to consider. For instance, when using a
smaller database of fragments or smaller population the
algorithm is faster. Similarly, the computational resources
spent per operation increase with molecular complexity,
specifically degree of branching.

If one wishes to achieve even greater OP it’s possible to
use the results of a VS as the starting population for EAs.
While we don’t believe this qualifies as de novo molec-
ular design, this type of molecular optimization may be
interesting when computational resources are abundant.
Unsurprisingly, we found that using VS results as starting

Fig. 16 Optimization power comparison between LEADD, GB-GA and a VS. Benchmark scores range between 0 and 1, with higher scores being
better. Boxes represent interquartile ranges (IQR), the black line within them medians and the whiskers Q ± 1.5IQR. Data beyond the whiskers are
considered outliers and represented as dots. Colored dots represent maximum benchmark scores. Note that VS results are deterministic and have
null variability

Page 18 of 20Kerstjens and De Winter Journal of Cheminformatics (2022) 14:3

populations decreased the variability between replicas
and increased the mean replica score (Additional file 1:
Fig. S9). However, when using Morgan atom types this
didn’t always translate into higher maximum scores, as
the starting population may already be close to local fit-
ness minima in which the algorithm might get stuck. It’s

interesting to note that, while the molecules designed
this way have better SA than those in a true de novo
design setting, it’s worse than that of the starting popu-
lation (Additional file 1: Fig. S10). The SA loss is small
for LEADD with Morgan atom types, but substantial
for GB-GA and LEADD with dummy atom types, in the

Fig. 17 Score of best found molecule as a function of the number of scored molecules. For LEADD and GB-GA each line represents a replica. VS
results were shuffled 100 times and averaged to account for the effects of molecule screening order. Note that these are individual molecule scores
and not population/benchmark scores and therefore don’t correspond to the values in Fig. 16.

Page 19 of 20Kerstjens and De Winter Journal of Cheminformatics (2022) 14:3

latter case almost reverting to the de novo design values.
This showcases a tendency to design synthetically com-
plex molecules when algorithms form bonds carelessly.

Meaning of synthetic accessibility
Something all SA assessment tools have in common is
that their judgements aren’t absolute but rather relative
to the current chemical state of the art. Many DNDD
algorithms, including LEADD, try to optimize the val-
ues of these SA predictions. One of the main appeals of
DNDD is that it can suggest novel molecules. But if we
constrict our search to the known types of chemistry that
boast good SA predictions, how novel will these mol-
ecules truly be? Could our favor of the familiar lead us
to neglect large areas of (potentially interesting) chemical
space? Given the large uncertainty surrounding molecu-
lar activity predictions focusing research efforts on famil-
iar chemistry is a reasonable way of increasing a project’s
chances of success, but at a larger scale we risk creating
a self-perpetuating cycle that could lead to academic
stagnation. If we are confident enough in the accuracy of
our scoring functions perhaps we shouldn’t hold historic
data in such high regard and occasionally venture into
unknown territory.

Conclusions
We describe a novel set of genetic operators for frag-
ment- and graph-based evolutionary molecular design
algorithms that can enforce an arbitrary set of atom com-
patibility rules in a computationally efficient manner.
Here we applied these genetic operators to achieve an
improvement in OP and SA of designed molecules com-
pared to other EAs.

Abbreviations
VS: Virtual screen/virtual screening; SA: Synthetically accessible/synthetic
accessibility; OP: Optimization power; EA: Evolutionary algorithm; DNDD: De
novo drug design; SSSR: Smallest Set of Smallest Rings; CXSMILES: ChemAxon
extended SMILES; MBPM: Maximum Bipartite Matching Problem; MSI: Multiple
set intersection; ANOVA: Analysis of variance; FWER: Family-wise error rate;
USPTO: United States Patent and Trademark Office.

Supplementary Information
The online version contains supplementary material available at https:// doi.
org/ 10. 1186/ s13321- 022- 00582-y.

Additional file 1. Additional figures, tables and methodology, including
fragment database information, LEADD settings and statistical test results.

Acknowledgements
The computational resources and services used in this work were provided by
the Flemish Supercomputer Center (VSC), funded by the Research Founda-
tion Flanders (FWO) and the Flemish Government. We would like to thank
Engelbert Tijskens for assisting with the creation of LEADD’s Python bindings
and the CalcUA staff for providing technical support.

Authors’ contributions
AK developed and benchmarked the algorithm and software. HDW super-
vised the research. Both authors contributed in writing the publication. Both
authors read and approved the final manuscript.

Funding
This work was supported by a PhD Grant to Alan Kerstjens from the Research
Foundation Flanders (FWO) (FWO-project 39461).

Availability of data and materials
LEADD’s source code can be found on the project’s GitHub repository (https://
github. com/ UAMCA ntwer pen/ LEADD). Fragments and compatibility rules
were extracted from the GuacaMol “all SMILES” (v1) dataset, available at the
GuacaMol GitHub repository (https:// github. com/ Benev olent AI/ guaca mol).

Declarations

Competing interests
Not applicable.

Received: 11 November 2021 Accepted: 30 December 2021

References
 1. Sterling T, Irwin JJ (2015) ZINC 15—ligand discovery for everyone. J Chem

Inf Model 55:2324–2337. https:// doi. org/ 10. 1021/ acs. jcim. 5b005 59
 2. Hu Q, Peng Z, Sutton SC et al (2012) Pfizer global virtual library (PGVL): a

chemistry design tool powered by experimentally validated parallel syn-
thesis information. ACS Comb Sci 14:579–589. https:// doi. org/ 10. 1021/
co300 096q

 3. Chevillard F, Kolb P (2015) SCUBIDOO: a Large yet screenable and easily
searchable database of computationally created chemical compounds
optimized toward high likelihood of synthetic tractability. J Chem Inf
Model 55:1824–1835. https:// doi. org/ 10. 1021/ acs. jcim. 5b002 03

 4. Ruddigkeit L, Van Deursen R, Blum LC, Reymond JL (2012) Enumeration
of 166 billion organic small molecules in the chemical universe database
GDB-17. J Chem Inf Model 52:2864–2875. https:// doi. org/ 10. 1021/ ci300
415d

 5. Ertl P (2003) Cheminformatics analysis of organic substituents: identifica-
tion of the most common substituents, calculation of substituent proper-
ties, and automatic identification of drug-like bioisosteric groups. J Chem
Inf Comput Sci 34:374–380. https:// doi. org/ 10. 1002/ chin. 20032 1198

 6. Polishchuk PG, Madzhidov TI, Varnek A (2013) Estimation of the size of
drug-like chemical space based on GDB-17 data. J Comput Aided Mol
Des 27:675–679. https:// doi. org/ 10. 1007/ s10822- 013- 9672-4

 7. Bohacek RS, McMartin C, Guida WC (1996) The art and practice of
structure-based drug design: a molecular modeling perspective. Med Res
Rev 16:3–50. https:// doi. org/ 10. 1002/ (SICI) 1098- 1128(199601) 16:1% 3c3::
AID- MED1% 3e3.0. CO;2-6

 8. Brown DG, Boström J (2016) Analysis of past and present synthetic meth-
odologies on medicinal chemistry: where have all the new reactions
gone? J Med Chem 59:4443–4458. https:// doi. org/ 10. 1021/ acs. jmedc
hem. 5b014 09

 9. Schneider N, Lowe DM, Sayle RA et al (2016) Big data from pharmaceuti-
cal patents: a computational analysis of medicinal chemists bread and
butter. J Med Chem 59:4385–4402. https:// doi. org/ 10. 1021/ acs. jmedc
hem. 6b001 53

 10. Virshup AM, Contreras-García J, Wipf P et al (2013) Stochastic voyages
into uncharted chemical space produce a representative library of all
possible drug-like compounds. J Am Chem Soc 135:7296–7303. https://
doi. org/ 10. 1021/ ja401 184g

 11. Lin A, Horvath D, Afonina V et al (2018) Mapping of the available chemical
space versus the chemical universe of lead-like compounds. ChemMed-
Chem 13:540–554. https:// doi. org/ 10. 1002/ cmdc. 20170 0561

 12. Schneider G, Fechner U (2005) Computer-based de novo design of drug-
like molecules. Nat Rev Drug Discov 4:649–663. https:// doi. org/ 10. 1038/
nrd17 99

https://doi.org/10.1186/s13321-022-00582-y
https://doi.org/10.1186/s13321-022-00582-y
https://github.com/UAMCAntwerpen/LEADD
https://github.com/UAMCAntwerpen/LEADD
https://github.com/BenevolentAI/guacamol
https://doi.org/10.1021/acs.jcim.5b00559
https://doi.org/10.1021/co300096q
https://doi.org/10.1021/co300096q
https://doi.org/10.1021/acs.jcim.5b00203
https://doi.org/10.1021/ci300415d
https://doi.org/10.1021/ci300415d
https://doi.org/10.1002/chin.200321198
https://doi.org/10.1007/s10822-013-9672-4
https://doi.org/10.1002/(SICI)1098-1128(199601)16:1%3c3::AID-MED1%3e3.0.CO;2-6
https://doi.org/10.1002/(SICI)1098-1128(199601)16:1%3c3::AID-MED1%3e3.0.CO;2-6
https://doi.org/10.1021/acs.jmedchem.5b01409
https://doi.org/10.1021/acs.jmedchem.5b01409
https://doi.org/10.1021/acs.jmedchem.6b00153
https://doi.org/10.1021/acs.jmedchem.6b00153
https://doi.org/10.1021/ja401184g
https://doi.org/10.1021/ja401184g
https://doi.org/10.1002/cmdc.201700561
https://doi.org/10.1038/nrd1799
https://doi.org/10.1038/nrd1799

Page 20 of 20Kerstjens and De Winter Journal of Cheminformatics (2022) 14:3

 13. Brown N, Fiscato M, Segler MHS, Vaucher AC (2019) GuacaMol: bench-
marking models for de novo molecular design. J Chem Inf Model
59:1096–1108. https:// doi. org/ 10. 1021/ acs. jcim. 8b008 39

 14. Gao W, Coley CW (2020) The synthesizability of molecules proposed by
generative models. J Chem Inf Model 60:5714–5723. https:// doi. org/ 10.
1021/ acs. jcim. 0c001 74

 15. Rotstein SH, Murcko MA (1993) GroupBuild: a fragment-based method for
de novo drug design. J Med Chem 36:1700–1710

 16. Glen RC, Payne AWR (1995) A genetic algorithm for the automated
generation of molecules within constraints. J Comput Aided Mol Des
9:181–202. https:// doi. org/ 10. 1007/ BF001 24408

 17. Gillet VJ, Myatt G, Zsoldos Z, Johnson AP (1995) SPROUT, HIPPO and
CAESA: tools for de novo structure generation and estimation of syn-
thetic accessibility. Perspect Drug Discov Des 3:34–50. https:// doi. org/ 10.
1007/ BF021 74466

 18. Ertl P, Schuffenhauer A (2009) Estimation of synthetic accessibility score
of drug-like molecules based on molecular complexity and frag-
ment contributions. J Cheminform 1:1–11. https:// doi. org/ 10. 1186/
1758- 2946-1-8

 19. Voršilák M, Kolář M, Čmelo I, Svozil D (2020) SYBA: Bayesian estimation
of synthetic accessibility of organic compounds. J Cheminform 12:35.
https:// doi. org/ 10. 1186/ s13321- 020- 00439-2

 20. Segler MHS, Preuss M, Waller MP (2018) Planning chemical syntheses with
deep neural networks and symbolic AI. Nature 555:604–610. https:// doi.
org/ 10. 1038/ natur e25978

 21. Genheden S, Thakkar A, Chadimová V et al (2020) AiZynthFinder: a fast,
robust and flexible open-source software for retrosynthetic planning. J
Cheminform 12:1–9. https:// doi. org/ 10. 1186/ s13321- 020- 00472-1

 22. Yuan Y, Pei J, Lai L (2011) LigBuilder 2: a practical de novo drug design
approach. J Chem Inf Model. 51:1083–1091. https:// doi. org/ 10. 1021/
ci100 350u

 23. Steinmann C, Jensen JH (2021) Using a genetic algorithm to find mol-
ecules with good docking scores. PeerJ Phys Chem 3:e18. https:// doi. org/
10. 7717/ peerj- pchem. 18

 24. Dey F, Caflisch A (2008) Fragment-based de novo ligand design by multi-
objective evolutionary optimization. Supporting Information J Chem Inf
Model 48:679–690. https:// doi. org/ 10. 1021/ ci700 424b

 25. Nicolaou CA, Apostolakis J, Pattichis CS (2009) De novo drug design
using multiobjective evolutionary graphs. J Chem Inf Model 49:295–307.
https:// doi. org/ 10. 1021/ ci800 308h

 26. Schneider G, Lee ML, Stahl M, Schneider P (2000) De novo design of
molecular architectures by evolutionary assembly of drug-derived
building blocks. J Comput Aided Mol Des 14:487–494. https:// doi. org/ 10.
1023/A: 10081 84403 558

 27. Fechner U, Schneider G (2006) Flux (1): A virtual synthesis scheme for
fragment-based de novo design. J Chem Inf Model 46:699–707. https://
doi. org/ 10. 1021/ ci050 3560

 28. Vinkers HM, De Jonge MR, Daeyaert FFD et al (2003) SYNOPSIS: SYNthe-
size and OPtimize system in silico. J Med Chem 46:2765–2773. https:// doi.
org/ 10. 1021/ jm030 809x

 29. Hartenfeller M, Zettl H, Walter M et al (2012) Dogs: reaction-driven de
novo design of bioactive compounds. PLoS Comput Biol 8:e1002380.
https:// doi. org/ 10. 1371/ journ al. pcbi. 10023 80

 30. Spiegel JO, Durrant JD (2020) AutoGrow4: an open-source genetic
algorithm for de novo drug design and lead optimization. J Cheminform
12:1–16. https:// doi. org/ 10. 1186/ s13321- 020- 00429-4

 31. Gómez-Bombarelli R, Wei JN, Duvenaud D et al (2018) Automatic chemi-
cal design using a data-driven continuous representation of molecules.
ACS Cent Sci 4:268–276. https:// doi. org/ 10. 1021/ acsce ntsci. 7b005 72

 32. Grisoni F, Moret M, Lingwood R, Schneider G (2020) Bidirectional
molecule generation with recurrent neural networks. J Chem Inf Model
60:1175–1183. https:// doi. org/ 10. 1021/ acs. jcim. 9b009 43

 33. Putin E, Asadulaev A, Ivanenkov Y et al (2018) Reinforced adversarial
neural computer for de novo molecular design. J Chem Inf Model
58:1194–1204. https:// doi. org/ 10. 1021/ acs. jcim. 7b006 90

 34. Kawai K, Nagata N, Takahashi Y (2014) De novo design of drug-like mol-
ecules by a fragment-based molecular evolutionary approach. J Chem Inf
Model 54:49–56. https:// doi. org/ 10. 1021/ ci400 418c

 35. Jensen JH (2019) A graph-based genetic algorithm and generative
model/Monte Carlo tree search for the exploration of chemical space.
Chem Sci 10:3567–3572. https:// doi. org/ 10. 1039/ c8sc0 5372c

 36. Douguet D, Thoreau E, Grassy G (2000) A genetic algorithm for the
automated generation of small organic molecules: drug design using an
evolutionary algorithm. J Comput Aided Mol Des 14:449–466. https:// doi.
org/ 10. 1023/a: 10081 08423 895

 37. Pegg SC, Haresco JJ, Kuntz ID (2001) A genetic algorithm for structure-
based de novo design. J Comput Aided Mol Des 15:911–933. https:// doi.
org/ 10. 1023/a: 10143 89729 000

 38. Brown N, McKay B, Gilardoni F, Gasteiger J (2004) A graph-based genetic
algorithm and its application to the multiobjective evolution of median
molecules. ChemInform 35:1079–1087. https:// doi. org/ 10. 1002/ chin.
20043 1198

 39. Douguet D, Munier-Lehmann H, Labesse G, Pochet S (2005) LEA3D: a
computer-aided ligand design for structure-based drug design. J Med
Chem 48:2457–2468. https:// doi. org/ 10. 1021/ jm049 2296

 40. Halgren TA (1996) Merck molecular force field. J Comput Chem 17:490–
519. https:// doi. org/ 10. 1002/ (SICI) 1096- 987X(199604) 17:5/ 6% 3c520:: AID-
JCC2% 3e3.0. CO;2-W

 41. Morgan HL (1965) The generation of a unique machine description for
chemical structures—a technique developed at chemical abstracts
service. J Chem Doc 5:107–113. https:// doi. org/ 10. 1021/ c1600 17a018

 42. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf
Model 50:742–754. https:// doi. org/ 10. 1021/ ci100 050t

 43. RDKit: Open-source cheminformatics. http:// www. rdkit. org/
 44. Berger F, Flamm C, Gleiss PM et al (2004) Counterexamples in chemical

ring perception. J Chem Inf Comput Sci 44:323–331. https:// doi. org/ 10.
1021/ ci030 405d

 45. ChemAxon ChemAxon Extended SMILES and SMARTS - CXSMILES and
CXSMARTS. https:// docs. chema xon. com/ displ ay/ docs/ chema xon- exten
ded- smiles- and- smarts- cxsmi les- and- cxsma rts. md. Accessed 10 Sep 2021

 46. Hipp DR SQLite. https:// www. sqlite. org
 47. Lindert S, Durrant JD, Mccammon JA (2012) LigMerge: a fast algorithm to

generate models of novel potential ligands from sets of known binders.
Chem Biol Drug Des 80:358–365. https:// doi. org/ 10. 1111/j. 1747- 0285.
2012. 01414.x

 48. Hopcroft JE, Karp RM (1971) N5/2 Algorithm for Maximum Matchings in
Bipartite Graphs. pp 122–125

 49. The HDF Group HDF5. https:// www. hdfgr oup. org/ solut ions/ hdf5
 50. Gaulton A, Bellis LJ, Bento AP et al (2012) ChEMBL: a large-scale bioactiv-

ity database for drug discovery. Nucleic Acids Res 40:1100–1107. https://
doi. org/ 10. 1093/ nar/ gkr777

 51. Mann HB, Whitney DR (1947) On a test of whether one of two random
variables is stochastically larger than the other. Ann Math Stat 18:50–60

 52. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analy-
sis. J Am Stat Assoc 47:583–621. https:// doi. org/ 10. 1080/ 01621 459. 1952.
10483 441

 53. Scheirer CJ, Ray WS, Hare N (1976) The analysis of ranked data derived
from completely randomized factorial designs. Biometrics 32:429–434

 54. Conover WJ, Iman RL (1981) Rank transformations as a bridge between
parametric and nonparametric statistics. Am Stat 35:124–129

 55. Šidák Z (1967) Rectangular confidence regions for the means of multivari-
ate normal distributions. J Am Stat Assoc 62:626–633. https:// doi. org/ 10.
1080/ 01621 459. 1967. 10482 935

 56. Hartenfeller M, Proschak E, Schüller A, Schneider G (2008) Concept of
combinatorial de novo design of drug-like molecules by particle swarm
optimization. Chem Biol Drug Des 72:16–26. https:// doi. org/ 10. 1111/j.
1747- 0285. 2008. 00672.x

 57. Hawkins PCD, Skillman AG, Nicholls A (2007) Comparison of shape-
matching and docking as virtual screening tools. J Med Chem 50:74–82

 58. OpenEye Scientific Software ROCS. https:// www. eyeso pen. com

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1021/acs.jcim.8b00839
https://doi.org/10.1021/acs.jcim.0c00174
https://doi.org/10.1021/acs.jcim.0c00174
https://doi.org/10.1007/BF00124408
https://doi.org/10.1007/BF02174466
https://doi.org/10.1007/BF02174466
https://doi.org/10.1186/1758-2946-1-8
https://doi.org/10.1186/1758-2946-1-8
https://doi.org/10.1186/s13321-020-00439-2
https://doi.org/10.1038/nature25978
https://doi.org/10.1038/nature25978
https://doi.org/10.1186/s13321-020-00472-1
https://doi.org/10.1021/ci100350u
https://doi.org/10.1021/ci100350u
https://doi.org/10.7717/peerj-pchem.18
https://doi.org/10.7717/peerj-pchem.18
https://doi.org/10.1021/ci700424b
https://doi.org/10.1021/ci800308h
https://doi.org/10.1023/A:1008184403558
https://doi.org/10.1023/A:1008184403558
https://doi.org/10.1021/ci0503560
https://doi.org/10.1021/ci0503560
https://doi.org/10.1021/jm030809x
https://doi.org/10.1021/jm030809x
https://doi.org/10.1371/journal.pcbi.1002380
https://doi.org/10.1186/s13321-020-00429-4
https://doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.1021/acs.jcim.9b00943
https://doi.org/10.1021/acs.jcim.7b00690
https://doi.org/10.1021/ci400418c
https://doi.org/10.1039/c8sc05372c
https://doi.org/10.1023/a:1008108423895
https://doi.org/10.1023/a:1008108423895
https://doi.org/10.1023/a:1014389729000
https://doi.org/10.1023/a:1014389729000
https://doi.org/10.1002/chin.200431198
https://doi.org/10.1002/chin.200431198
https://doi.org/10.1021/jm0492296
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3c520::AID-JCC2%3e3.0.CO;2-W
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3c520::AID-JCC2%3e3.0.CO;2-W
https://doi.org/10.1021/c160017a018
https://doi.org/10.1021/ci100050t
http://www.rdkit.org/
https://doi.org/10.1021/ci030405d
https://doi.org/10.1021/ci030405d
https://docs.chemaxon.com/display/docs/chemaxon-extended-smiles-and-smarts-cxsmiles-and-cxsmarts.md
https://docs.chemaxon.com/display/docs/chemaxon-extended-smiles-and-smarts-cxsmiles-and-cxsmarts.md
https://www.sqlite.org
https://doi.org/10.1111/j.1747-0285.2012.01414.x
https://doi.org/10.1111/j.1747-0285.2012.01414.x
https://www.hdfgroup.org/solutions/hdf5
https://doi.org/10.1093/nar/gkr777
https://doi.org/10.1093/nar/gkr777
https://doi.org/10.1080/01621459.1952.10483441
https://doi.org/10.1080/01621459.1952.10483441
https://doi.org/10.1080/01621459.1967.10482935
https://doi.org/10.1080/01621459.1967.10482935
https://doi.org/10.1111/j.1747-0285.2008.00672.x
https://doi.org/10.1111/j.1747-0285.2008.00672.x
https://www.eyesopen.com

	LEADD: Lamarckian evolutionary algorithm for de novo drug design
	Abstract
	Introduction
	Methods
	Fragment library creation
	Connection compatibility rules
	Chromosomal representation and initialization
	Genetic operators
	Connection rules enforcement
	Operation outcome sampling
	Cyclicity control

	Lamarckian evolution guidance
	Evolutionary algorithm
	API
	Benchmark

	Results and discussion
	Effect of atom typing scheme
	Implications of compatibility binarization
	Effect of fragmentation scheme
	Handling fragment numerosity
	Comparison of SA improvement approaches
	Comparison to other algorithms and virtual screening
	Meaning of synthetic accessibility

	Conclusions
	Acknowledgements
	References

