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Abstract 

Given an objective function that predicts key properties of a molecule, goal-directed de novo molecular design is a 
useful tool to identify molecules that maximize or minimize said objective function. Nonetheless, a common draw-
back of these methods is that they tend to design synthetically unfeasible molecules. In this paper we describe a 
Lamarckian evolutionary algorithm for de novo drug design (LEADD). LEADD attempts to strike a balance between 
optimization power, synthetic accessibility of designed molecules and computational efficiency. To increase the likeli-
hood of designing synthetically accessible molecules, LEADD represents molecules as graphs of molecular fragments, 
and limits the bonds that can be formed between them through knowledge-based pairwise atom type compatibility 
rules. A reference library of drug-like molecules is used to extract fragments, fragment preferences and compatibility 
rules. A novel set of genetic operators that enforce these rules in a computationally efficient manner is presented. 
To sample chemical space more efficiently we also explore a Lamarckian evolutionary mechanism that adapts the 
reproductive behavior of molecules. LEADD has been compared to both standard virtual screening and a comparable 
evolutionary algorithm using a standardized benchmark suite and was shown to be able to identify fitter molecules 
more efficiently. Moreover, the designed molecules are predicted to be easier to synthesize than those designed by 
other evolutionary algorithms.
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Introduction
Many computational drug discovery projects employ vir-
tual objective functions (also termed fitness or scoring 
functions) to predict a molecule’s properties of interest, 
including its biological activity. In virtual screening (VS) 
one evaluates the objective function for all molecules in 
a virtual library to find the most promising ones. Com-
monly the molecules being screened are either commer-
cially available [1] or predicted to be easy to synthesize 
[2, 3], enabling a fast transition from in silico to in vitro 
studies.

However, given that even the largest virtual librar-
ies [2, 4] dwarf in size compared to drug-like chemical 
space, which is commonly cited to contain somewhere 
between  1023 and  1060 [5–7], it’s unlikely that the library 
will contain the most active molecules possible. Prefer-
ences for certain chemotypes and synthetic reactions [8, 
9] often make their way to virtual libraries, leading to a 
small and non-uniform coverage of chemical space [10, 
11]. This, coupled to the fact that publicly available librar-
ies may have been screened previously or even contain 
patent-protected molecules, raises concerns about a lack 
of chemical novelty. Last but not least, the enumeration, 
storage, maintenance and screening of virtual libraries is 
a resource intensive process.

Computational de novo drug design (DNDD), that is, 
the computational design of molecules without a prob-
lem-relevant molecular starting point, has the potential 
to solve some of these problems. The traditional approach 
to DNDD [12], sometimes termed goal-directed design 
[13], is the progressive construction or modification of 
a molecule to optimize the value of a fitness function, 
according to some optimization algorithm. While this 
approach can succeed at finding highly fit molecules effi-
ciently, if applied naively the designed molecules tend to 
be hard to synthesize [13, 14]. Different solutions have 
been applied to tackle this problem.

Some solutions revolve around the use of synthetic 
accessibility (SA) metrics. These metrics may have to be 
calculated many times throughout the design process, 
often limiting the user to rather crude rules [15, 16] or 
heuristics [17–19] and precluding the use of more relia-
ble retrosynthetic analyses [20, 21]. Post-hoc filtering [22, 
23], while simple and modular, is computationally inef-
ficient as it might discard solutions in which significant 
amounts of costs were already sunk. Employing the SA 
descriptors as a heuristic score bias instead [14, 23] can 
partially solve this problem. However, both approaches 
create hard or soft boundaries within the search space 
respectively. Given that the fitness landscape of a typi-
cal drug discovery project can be very rugged, this may 
impede the discovery of good solutions. Alternatively, 
one may attempt to optimize both the fitness and SA 

simultaneously with multi-objective optimization algo-
rithms [24, 25]. Since these objectives may counteract 
each other, the algorithm attempts to find suitable com-
promises between them, but it’s the decision-maker’s 
responsibility to define which balances are desired or 
acceptable.

A second group of approaches attempts to incorporate 
some chemical awareness into the design algorithm itself. 
Ways of achieving this include fragmentation/recom-
bination rules [26, 27] and simulating virtual chemical 
reactions [28–30]. These have the advantage of consider-
ing SA implicitly as part of the molecular construction 
process. The likelihood of such an algorithm succeeding 
at designing SA molecules depends on how well it cap-
tures chemical reality. Typically, the better a construction 
scheme resembles organic synthesis, the higher the SA of 
the designed molecules, but also the computational cost 
to find them. Reducing the number of bonds created by 
the algorithm, for instance by using predefined multi-
atomic molecular fragments, can be an effective way of 
increasing the SA of designed molecules while avoiding 
expensive construction schemes.

More recently, generative models such as variational 
autoencoders [31], recurrent neural networks [32] and 
generative adversarial networks [33] have been applied 
to DNDD. When trained on datasets of molecules with 
some desirable properties, including synthesizability, 
these models can suggest new molecules with similar 
properties. These technologies have shown great promise 
in designing synthetically feasible molecules [14]. How-
ever, the amount of available training data can hamper 
the approach.

In this paper we describe LEADD, an evolutionary 
algorithm (EA) for de novo drug design and optimization. 
EAs have a rich history of being applied to DNDD [16, 
24–27, 30, 34–39]. They draw inspiration from Darwin-
ian evolution and natural selection, stochastically breed-
ing a population of solutions through the use of genetic 
operators (i.e. mutation and crossover). Over the course 
of generations, the objective function exerts selective 
pressure on the population driving it towards optimality.

LEADD designs molecules as combinations of molec-
ular fragments, bonded according to the topology of a 
graph. Knowledge-based atom pair compatibility rules, 
defining which fragments can be bonded and how, are 
enforced by a novel set of genetic operators. Both the 
fragments and compatibility rules are extracted from 
a library of drug-like molecules, and the outcomes of 
the genetic operations are biased according to the fre-
quency of the fragments in drug-like matter. Addition-
ally, a Lamarckian evolutionary mechanism adjusts the 
future reproductive behavior of molecules based on the 
outcome of previous generations. LEADD attempts to 
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strike a balance between optimization power (OP), SA of 
designed molecules and computational performance.

Methods
Fragment library creation
A virtual library, assumed to be representative of drug-
like chemical space, is fragmented to yield the fragments 
employed by LEADD during the design process.

Within this context, a fragment is a connectivity-
encoding molecular subgraph of the source molecule 
from which it was extracted. A connection is an object 
describing the bond between two atoms and is direc-
tional by nature. It can be represented as a three-integer 
tuple, where the integers describe the starting atom type, 
ending atom type and bond type respectively. Bonds are 
classified into either single, double or triple bond type 
(aromatic bond types don’t occur since rings aren’t frag-
mented; see below). While any atom typing scheme may 
be used, we have implemented into LEADD MMFF94 
[40] and Morgan atom types. Morgan atom types derive 
their name from the Morgan algorithm [41], a variant 
of which is used in ECFP [42] and RDKit Morgan fin-
gerprints [43] to generate canonical atomic identifiers. 
These atomic identifiers are 32-bit integers describing 
the atom’s topological circular chemical environment of a 
given radius r. Said integer is taken as the atom’s Morgan 
atom type. For clarity, the examples and figures in this 
paper use MMFF94 atom types.

We distinguish between connections, which are generic 
objects describing the type of an atom–atom bond, and 
connectors, which are specific instances of a connection 
centered on a fragment’s atom. During molecule frag-
mentation, the bonds between the fragment’s molecu-
lar subgraph and its extra-fragment adjacent atoms are 
recorded as connectors (Fig. 1).

For each molecule, fragmentation starts by isolating 
ring systems from the acyclic regions. Rings pertaining 
to the Smallest Set of Smallest Rings (SSSR) [44] are con-
sidered to be part of the same ring system if they share 
at least one atom. Given the complexities of designing 
drug-like ring systems, we decided to consider whole ring 
systems as fragments. The remaining acyclic structures 
may either be taken as fragments as a whole or subjected 
to systematic fragmentation by extracting all possible 
molecular subgraphs of a given size from them, with each 
subgraph becoming a fragment (Fig.  1). Hydrogens are 
treated implicitly. The size of the extracted subgraphs (s), 
given in number of bonds within the subgraph, is pro-
vided by the user. When s = 0, single atom fragments are 
generated. Fragments of different sizes can be combined 
by specifying a range of sizes.

Two fragments are considered equivalent only if both 
their molecular graph and connectors are the same. Both 

attributes are encoded as canonical ChemAxon extended 
SMILES (CXSMILES) [45] and molecular identity is 
assessed as canonical CXSMILES identity.

The generated fragments, their connectors, frequen-
cies, sizes and other convenience information are stored 
in a relational SQLite3 database [46] (Additional file  1: 
Fig. S1). When a generated fragment is already present in 
the database its frequency is incremented by one.

Connection compatibility rules
Fragment compatibility is defined at the connection level. 
Two fragments can be bonded together if two of their 
free connectors are compatible. Whether two connec-
tions are compatible is determined by a set of pairwise 
and symmetric compatibility rules.

The compatibility rules are extracted from the con-
nections table of the fragment database according to  a 
user-specified compatibility definition. We employ two of 

Fig. 1 Fragmentation example of two molecules. The input 
molecules (A) are assigned MMFF94 atom types (B). Ring systems and 
all possible subgraphs from the remaining linkers and side chains of 
a given size (in this example s ϵ [0 .. 1]) are extracted as fragments (C). 
The bonds that were cut to extract fragments become connectors, 
and are represented as three-membered tuples in parenthesis. The 
number in bold below each fragment is its ID
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those definitions, termed the “strict” and “lax” compati-
bility definitions. Both definitions are illustrated in Fig. 2.

According to the strict definition two connections 
are compatible only if (a) their bond types are the same, 
and (b) their atom types are mirrored (i.e. the start atom 
type of one is the end atom type of the other and vice 
versa). Consequently, only a single connection is compat-
ible with each connection. During molecule design this 
entails that the connectivity of fragments to their flank-
ing atoms in their source molecules is preserved. In other 
words, a fragment must be connected to atoms of the 
same atom type as those that flanked the fragment in the 
source molecule.

When following the lax compatibility definition two 
connections are compatible if (a) their bond types are the 
same, and (b) if the starting atom type of one has been 
previously observed paired with the starting atom type of 
the other in any connection. This definition expands the 
connectivity scope from the fragment’s source molecule 
to the entire source molecules pool. In other words, two 
atom types can be connected if they have been observed 
paired together in any of the database’s connections, 
which means they were bonded in at least one of the 
source molecules. As such, the strict compatibility defini-
tion is a subset of its lax counterpart.

Chromosomal representation and initialization
Molecules are represented internally as meta-graphs [38], 
where each vertex is a molecular graph corresponding 
to a fragment, and the edges describe which connectors 
bind the fragments (Fig.  3). Due to the complexities of 

designing drug-like ring systems we treat ring systems 
as whole fragments, represented as a single vertex in the 
meta-graph. However, while the genetic operators don’t 
create cycles in the meta-graph, they would work on 
existing cycles if one were to add a cyclization operator 
in the future.

The meta-graph chromosome can be translated into 
a single molecular graph by connecting the molecular 
graphs of all fragments (Fig.  3). Thereafter, hydrogens 
are added to satisfy all incomplete valences. For ele-
ments with more than one valid valence like sulphur or 
phosphorus hydrogens are added up to the closest valid 
valence.

Upon initialization, for true de novo drug design ran-
dom chromosomes are generated by successively com-
bining random fragments. However, in some instances 
the user may want to perform molecule optimization 
instead, starting from a known population of molecules. 
In this case, it’s possible to convert regular molecular 
graphs into meta-graphs by following the previously laid 
out fragmentation procedure using single atom acyclic 
fragments (s = 0). If any of the connections generated 
during the fragmentation of starting molecules don’t 
appear in the database, connection compatibility infor-
mation won’t be available for them and the molecule will 
therefore be skipped.

Genetic operators
LEADD employs eight distinct genetic operators to mod-
ify the chromosome and generate offspring (Fig. 4). Some 
of these operators have a peripheral and internal variant, 
referring to the location of fragments on which they oper-
ate. Peripheral fragments are those connected to one or 
less other fragments (vertex degree d ≤ 1), while internal 
fragments are those connected to two or more fragments 
(d ≥ 2). While peripheral operators are theoretically suffi-
cient to access the entirety of the search space, in practice 
this relies on statistically unlikely sequences of opera-
tions, since to modify the core of the molecule one would 
have to “backtrack” and remove all peripheral fragments 
obstructing it. Hence, the algorithm would be very likely 
to get stuck in local minima on the fitness landscape.

The function of peripheral variants is mostly self-
explanatory: peripheral expansions attach a fragment 
sampled from the database to a free connector, while 
peripheral deletions delete a peripheral fragment.

In internal expansions a fragment is inserted between 
a target fragment and one or more of its adjacent frag-
ments. For this purpose, connectors involved in bonding 
the target fragment to the adjacent fragments are consid-
ered free.

Fig. 2 Connection compatibilities of the connections in Fig. 1 
according to the strict (A) and lax (B) compatibility definitions. Since 
in the lax definition the end atom type is irrelevant it is omitted
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In an internal deletion an internal target fragment is 
deleted. This is only possible if one of the fragments adja-
cent to the target fragment can “take its place” and bond 
to the remainder of the adjacent fragments.

In a substitution a target fragment is replaced by a frag-
ment in the database. Connectors bonding the target 
fragment to its neighboring fragments are deemed free.

Transfections derive their name from the correspond-
ing biochemical technique of inserting genetic material 
into cells. Transfections are similar to substitutions in 
that they replace one fragment with another, with the dif-
ference being that the replacement fragments are sourced 
from the molecule population instead of the fragments 
database. Hence, they exploit the internal variability of 
the population, fulfilling a similar role to crossover oper-
ators in traditional genetic algorithms. We opted out of 
traditional crossover operators because crossing over 
graphs is non-trivial. Historically graph crossover opera-
tions have been implemented as exchanges of subgraphs 
[10, 35, 37, 38], or of side chains around a maximum 
common substructure [30, 47]. If we were to implement 
one of these approaches it would have to operate on our 

chromosomal meta-graph without infringing on the con-
nection compatibility rules. The former approach would 
be error prone, whereas the latter assumes the presence 
of a large common substructure, which is unlikely if the 
fragments are diverse and the number of fragments is 
large. While the transfection operator is less disrup-
tive than a crossover operator, the unidirectional flow of 
genetic material in transfections is easier to implement, 
guarantees the success of the operation and reduces the 
time complexity from O(n2) to O(n) compared to a bidi-
rectional crossover.

Translations/rotations move a fragment from one posi-
tion and orientation to another within the same mol-
ecule. They operate similar to a deletion and expansion 
in tandem. By inserting the fragment back in its starting 
position but with a different orientation it can effectively 
be rotated in place.

Lastly, for those scoring functions operating on 3D 
molecular structures, a stereochemistry flip opera-
tor is available. This operator chooses a random chi-
ral atom or stereochemical double bond and inverts its 
stereochemistry.

Fig. 3 Chromosomal representation of a molecule created through combination of fragments in Fig. 1 using the lax compatibility definition. a 
Chromosomal meta-graph. Numbered vertices correspond to fragment IDs. Numbers between parenthesis represent connector tuples. Bonds 
between connectors are represented as rectangles. b The chromosome with fragments shown as their molecular graphs. c Translation of the 
chromosome to the molecule seen by the user
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Connection rules enforcement
LEADD’s genetic operators satisfy the connection com-
patibility rules by searching for fragments that can bond 

simultaneously to a given combination of fragments. 
Whether a specific query fragment fulfils the above con-
dition can be expressed as a Maximum Bipartite Match-
ing problem (MBPM). We construct the bipartite graph 
by placing the query fragment’s free connectors in one 
vertex set, and the fragments within the combination in 
the other vertex set (Fig. 5). The edges between both ver-
tex sets are drawn according to the lax connection com-
patibility rules (Fig. 2B), with an edge representing that a 
connection is compatible with a fragment. This MBPM is 
then solved with a modified version of the Hopcroft-Karp 
algorithm [48]. The standard version of the algorithm is 
deterministic and always returns the same matching, 
even if multiple matchings with the same cardinality 
exist. By randomizing the order in which it iterates over 
vertices and edges it returns a random maximum cardi-
nality matching instead. If the cardinality of the resulting 
matching is equal to the number of fragments within the 
combination, the query fragment is compatible with said 
combination of fragments.

To find all fragments that could bond to a combination 
of fragments one must interrogate all candidate frag-
ments separately, which entails solving MBPM multiple 
times. This is computationally reasonable when the num-
ber of candidates is small, namely during internal dele-
tions, transfections and translations/rotations. However, 
it becomes unreasonable for operations that sample frag-
ments from the large fragments database, namely expan-
sions and substitutions.

In those cases, we solve the problem through Multiple 
Set Intersection (MSI). Before LEADD is executed we 
precompute which fragments are compatible with each 
connection according to the strict connection compat-
ibility rules and store their IDs in sets (Fig. 6A). Since a 
connection combination may have repeats of the same 
connection, the compatible fragment IDs are stored 
stratified according to how many instances of compatible 
connections they have. If a fragment is compatible with n 
instances of a connection it is also compatible with 1 to 
n−1 instances. To be able to control the number of ring 
fragments within the designed molecules, fragments are 
also stratified according to whether these are cyclic or 
acyclic.

At runtime these arrays are loaded, and the list of frag-
ments compatible with a combination of connections is 
calculated as the intersection of the fragment IDs com-
patible with each of its connections separately (Fig.  7). 
Note that since fragments may have more than one free 
connector, if we wish to find fragments compatible with 
a combination of fragments, we must define all unique 
combinations of their free connectors and solve the MSI 
problem for each of them. The final result is the union of 
all resulting sets.

Fig. 5 MBPM constructed to query whether a hypothetical fragment 
with a given set of connectors (left) is compatible with a combination 
of fragments (right). Black and orange edges represent compatibility 
relationships. The solution to the MBPM (i.e. the matching) is 
shown as the orange highlighted edges. Since the cardinality of 
the matching is equal to the number of flanking fragments our 
hypothetical fragment is compatible

Fig. 4 Illustration of the resulting chromosomes after applying each 
of the eight genetic operators to the chromosome given in Fig. 3a
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The MSI connection-fragment compatibilities must 
be computed using the strict connection compatibility 
definition to ensure that the same connector doesn’t con-
tribute to a fragment showing up in more than one set of 
compatible fragments. Because of this, the MSI approach 
returns a subset of all fragments that would be deemed 
compatible according to the MBPM approach (Fig.  6). 
Nonetheless, the final orientation of fragments retrieved 

with the MSI approach can still be determined through 
MBPM.

Operation outcome sampling
In the event that an operator finds multiple suitable 
operation outcomes a random one is chosen, typically 
through roulette wheel selection. For expansions, dele-
tions and substitutions the weight W of a fragment F is 
calculated based on its frequency q in the database and 
its size N, in numbers of heavy atoms, according to the 
following equation:

where the exponents γ and λ are user parameters. γ 
determines how much the fragment selection should 
be guided by the fragment frequencies, with the default 
being γ = 1. If the user wishes true random fragment 
selection this can be done by setting γ = 0. λ is a size bias-
ing term intended to be used when mixing fragments 
of different sizes. For efficiency reasons they are precal-
culated and stored alongside the connection-fragment 
compatibilities (Additional file 1: Fig. S2).

(1)WF = q
γ

F · N �
F

Fig. 6 Connection-fragment compatibilities of the fragments in Fig. 1 according to (a) the strict compatibility rules and (b) lax compatibility rules, 
as described in Fig. 2. Fragment weights are omitted for clarity purposes (Additional file 1: Fig. S2). Fragments are stratified according to their 
cyclicity, and in the case of the strict compatibility definition (a) also according to how many instances (n) of the connection the fragment has. In 
(b), “e” denotes any ending atom type. Note that in (a) higher strata are subsets of the lower strata, and that (a) is a subset of (b)

Fig. 7 Venn diagram of the multiple intersection result for acyclic 
fragments compatible with the connections combination [(1,1,1), 
(1,1,1), (7,3,2), (37,3,1)], using the precalculated compatible fragments 
according to the strict compatibility definition (Fig. 6a)
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For transfections the weight is calculated following 
the same formula but with the score S of the fragment’s 
owner molecule R as an additional variable term:

where ζ is a user specified parameter signifying the trans-
fection bias towards fragments contained in high scoring 
molecules.

The translation/rotation and stereo flip operators select 
operation outcomes through uniform random sampling 
instead.

Cyclicity control
Fragment identity comprises both the molecu-
lar graph and connectors. Generally, the number 
of unique fragments increases with (1) the size of 
the fragments and (2) the atom type and connector 
diversity (Additional file  1: Table  S1). Differences in 
fragmentation procedure between acyclic and cyclic 
regions of source molecules can cause imbalances in 
the number of unique fragments, as well as their fre-
quencies, which can lead to fragment sampling biases. 
Since cyclic fragments tend to outnumber their acy-
clic counterparts (Additional file 1: Table S1), if frag-
ments were sampled uniformly (γ = 0, Eq. 1) it would 
be more likely to sample cyclic fragments. Conversely, 
under weighted sampling (γ > 1), and when defining 
acyclic fragments as subgraphs of s > 0, certain acy-
clic atoms are represented in more than one fragment. 
Since ring systems aren’t fragmented, this causes an 
overrepresentation of acyclic atoms in the fragment 
frequencies with respect to the cyclic ones. If these 
factors aren’t accounted for during fragment sam-
pling, we risk designing either very rigid or very flex-
ible and non-druglike molecules.

To circumvent this issue the genetic operators with 
the capacity to modulate the number of ring atoms in 
a molecule (Nr), namely expansions, deletions, substi-
tutions and transfections, decide whether and how Nr 
ought to be changed prior to selecting a suitable acy-
clic or cyclic fragment to do so, according to the cur-
rent Nr.

How the operator will modulate Nr is based on the 
probabilities returned by up to two functions operat-
ing in tandem. In first instance, a Gaussian function 
describes the probabilities of keeping Nr constant. 
For expansions and deletions this function suffices 
to decide how to modulate Nr. However, for substitu-
tions and transfections, if in the preceding step it was 
decided to change Nr, a second logistic function returns 
the probability of increasing Nr. Further details can be 
found in the supplementary material.

(2)WF = q
γ

F · N �
F · S

ζ

R

Lamarckian evolution guidance
Given that the database fragment weights are static, so are 
the likelihoods of genetic operation outcomes, regardless 
of whether the same or similar operations proved benefi-
cial or not in the past. In an attempt to improve the effi-
ciency of the algorithm, as an extension, we conferred it 
with a certain ability to “learn” from the outcomes of pre-
vious genetic operations in hopes of increasing the likeli-
hood of carrying out productive operations in the future. 
To this end, each connector within a molecule is endowed 
with a pair of arrays: one storing the IDs of compatible 
fragments F and one storing their corresponding weights 
WF. The weights array is initialized to a copy of the data-
base fragment weights (Additional file 1: Fig. S2), but it’s 
free to change with each generation.

During evolution, a copy of a parent molecule P is sub-
jected to a genetic operation, targeting some fragment V, 
to generate a child molecule C. The score S of C is com-
pared to that of P:

Molecules keep track of which fragments were placed 
and/or removed from each connector during the opera-
tion. For each connector involved in the operation, based 
on the nature of the operation and its outcome (Table 1), 
the weights array of both the P and C’s connectors are 
modified according to the following expression:

  
where g is the reinforcement sign, l is a user-specified 
reinforcement rate and TcFV is the Tanimoto topological 
similarity coefficient of fragments F and V according to 
ECFP4 fingerprints [42]. For performance reasons, all pair-
wise fragment similarity coefficients are precalculated and 
stored as a square symmetrical matrix in a HDF5 file [49].

Whether the change in weight is positive or nega-
tive (g) depends on the nature of the operator and the 
change in score (Table  1). LEADD maximizes strictly 
positive scores. The general principle is that if a newly 

(3)�S = Sc − SP

(4)WF = WF ·
(

1+ g · l · TcFV
)

Table 1 Learning rate sign of Eq. 4 for bond creations (i.e. 
attaching a fragment to a connector) and destructions (i.e. 
deleting a fragment from a connector) based on the score 
change associated with the operation

Operation ΔS Learning 
rate sign 
(g)

Bond creation > 0 + 1

≤ 0 − 1

Bond destruction > 0 − 1

≤ 0 + 1
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placed fragment at a given connector increased the mol-
ecule’s score (i.e. improved the score), the weights of 
similar fragments are increased, whereas if it stayed the 
same or decreased, the weights of similar fragments are 
decreased. The opposite paradigm is true for fragments 
being removed from a given connector.

This guided evolution serves two purposes. On one 
hand it can accelerate convergence by focusing the sam-
pling on fragments that have been shown to be associ-
ated with good scores. On the other hand, since weights 
of similar fragments are decreased also when the score 
doesn’t change, given enough time it could help the algo-
rithm in escaping local fitness minima.

One could interpret a molecule’s connectors’ weights 
arrays as its reproductive behavior or its memory regard-
ing which chemotypes at which positions are linked to 
better scores. Parents adapt their reproductive behavior 
to increase the likelihood of generating fit offspring based 
on the outcome of their previous reproductive events. 
Hence, the reproductive behavior is an acquired trait. 
This, coupled to the fact that the connector arrays are an 
integral part of the chromosome, and therefore inherited 
by the offspring, constitutes a Lamarckian evolutionary 
mechanism.

Evolutionary algorithm
Over the course of a number of generations (or until 
some convergence criterion is met) the molecules within 
the population are bred to generate offspring. Each 
generation a number of parent molecules is chosen to 
generate an equal number of child molecules. Parents 
reproduce asexually, and the same parent may reproduce 
more than once in the same generation. A copy of the 
chosen parent is subjected to a genetic operator to yield 
the child molecule. Molecules are chosen to be parents 
through fitness proportionate selection, with the weight 
of a molecule R being given by Eq.  5. Note that the ζ 
parameter takes the same value as in Eq. 2.

Optionally, the user may enforce population topologi-
cal diversity through means of an internal similarity filter. 
The topological similarity between two molecules is cal-
culated as the Tanimoto coefficient between their ECFP4 
fingerprint [42]. If the similarity of a child molecule to 
any of the current members of the population surpasses 
a given threshold, the child is discarded. Otherwise, it’s 
added to the population.

The child molecules are scored, and a specified number 
of best scoring molecules within the population, includ-
ing parents, is retained. If guided evolution is enabled the 
connector weights are adjusted based on the change in 
score caused by the operation. Lastly, the surviving mol-
ecules are fed to the next generation of the algorithm.

While the use of fragments and connection compat-
ibility rules is meant to reduce the likelihood of designing 
synthetically unfeasible molecules, this may not be suffi-
cient to achieve this goal. For users wishing to consider 
synthetic accessibility on a higher level a SAScore [18] fil-
ter and heuristic score modifier [14] are provided.

A flowchart of the algorithm can be found in Addi-
tional file 1: Fig. S4.

API
LEADD is scoring function agnostic, the only 
requirements being strictly positive floating point 
molecule scores, with higher scores being better. The rec-
ommended way of coupling a problem-specific scoring 
function is using the C++ or Python API. An instance of 
a molecule design class is initialized using a settings file 
and output directory path. This class has member func-
tions to expand the population with children, get their 
SMILES, set their scores, and wrap up the generation by 
selecting the fittest individuals. A Python example of how 
these functions can be used in conjunction with a user 
scoring function ScoreMolecule() is shown below.

(5)WR = S
ζ

R

leadd = LEADD(settings_file, output_directory)
while not leadd.TerminationCriteriaMet():

leadd.GenerateChildren()
for molecule in leadd.GetPopulation():

if molecule.IsChild():
smiles = molecule.GetSanitizedSMILES()
score = ScoreMolecule(smiles)
molecule.SetScore(score)

leadd.SelectivePressure()
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Benchmark
LEADD’s performance was evaluated with the goal-
directed GuacaMol benchmark suites [13]. Specifically, 
we used the “trivial” and “version 2” (V2) benchmark 
suites. Briefly, these benchmark suites consist of 7 and 
20 objective functions respectively that assign scores 
between 0 and 1 to populations of molecules. The over-
all score of the benchmark suite can be calculated as the 
sum of all individual benchmark scores. We chose to 
include the trivial benchmarks in our analysis because 
the majority of the V2 objective functions point towards 
topologies of known and synthetically feasible drugs. 
Hence, the objective functions implicitly provide some 
notions of drug-likeness, potentially occluding some SA 
issues.

For standardization purposes we used GuacaMol’s 
training set, which is a subset of ChEMBL [50], as frag-
mentation input. Fragment databases were created for 
each investigated combination of fragmentation and 
atom typing scheme (Additional file 1: Table S1).

The benchmark suite was used to find a set of reasona-
ble default parameters for LEADD. Given the large num-
ber of parameters an exhaustive parameter exploration 
was unfeasible. We resorted largely to a trial-and-error 
approach. Some parameters, including the population 
size and convergence criteria were fixed. Additionally, 
since LEADD requires a guess of the number of ring 
atoms in the ideal solution, where possible, we used 
the benchmark goals to set reasonable values for these 
parameters (Additional file  1: Table  S2). The rest of the 
parameters were sorted according to their perceived 
importance. For parameters assumed to be uncorrelated 
we tested multiple values for each one and fixed it to the 
value that yielded the best results. If this wasn’t the case, 
we evaluated combinations of the correlated parameters 
in a multi-factorial design.

Ten replicas were ran for each combination of settings. 
Benchmark scores and SAScores of designed molecules 
were taken as OP and SA metrics respectively. ChEMBL 
[50] feature counts were used for SAScore calculations. 
For statistical analysis the results of all benchmarks were 
pooled per setting. Since OP was found to be distrib-
uted non-normally, differences in it were evaluated with 
non-parametric statistical tests: either the Wilcoxon-
Mann–Whitney U-test [51] or the Kruskal–Wallis [52]/
Schreirer-Ray-Hare [53] H-test followed by pairwise 
Conover-Iman tests [54] with Šidák correction [55]. SAS-
cores were distributed normally and analyzed with t-tests 
or one- or two-way analysis of variance (ANOVA) with 
interaction followed by Tukey’s Honestly Significant Dif-
ferences test. α = 0.05 was taken as significance level and 
family-wise error rate (FWER) for all tests.

LEADD’s performance was compared to that of GB-GA 
[35], an atom- and graph-based genetic algorithm for 
molecular design which has previously been shown to 
be a powerful optimizer [13, 23], and a standard virtual 
screen of GuacaMol’s training set using the benchmark’s 
objective function. GB-GA’s mutation rate was set to 
the default 0.01. Both algorithms used a population size 
of 100 and were granted a maximum of 10,000 genera-
tions. Evolution terminated prematurely after a number 
of generations without improvements in the population’s 
scores: 1000 for LEADD and 5 for GB-GA. We explored 
granting GB-GA 1000 generations without improvement 
but found that its lack of convergence guards caused 
the population diversity, and ultimately the benchmark 
scores, to degrade during long runs.

Results and discussion
LEADD was found to be quite robust to changes in 
most of its construction parameters, as different values 
didn’t influence its performance greatly. As an exception, 
LEADD was sensitive to the internal similarity thresh-
old since it’s the algorithm’s main premature conver-
gence guard (data not shown). LEADDs base parameters 
can be found in Additional file  1: Table  S3. Fragmenta-
tion parameters had larger effects on both OP and SA of 
designed molecules.

Effect of atom typing scheme
One of the main questions we wanted to answer was if 
the knowledge-based atom compatibility rules aided 
the algorithm in designing SA molecules. To that end, 
we measured the SAScores of molecules designed using 
the MMFF and Morgan (r = 1 and r = 2) atom typing 

Fig. 8 Comparison of designed molecules’ SAScore distributions 
using different atom typing schemes. Includes molecules of all 
benchmarks and replicas. Molecules with lower SAScores are 
predicted to be easier to synthesize
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schemes. As a control, we included “dummy” atom types 
(i.e. all atoms have the same atom type), whereby all con-
nections with the same bond order are compatible. All 
tests used single-atom acyclic fragments (s = 0). Mol-
ecules with lower SAScores are predicted to be easier 
to synthesize. Figure  8 shows that molecules designed 
with Morgan atom types, regardless of the radius, have 
lower SAScores than those designed with dummy or 
MMFF atom types. Differences between all other pairs of 
atom typing schemes were of little practical significance 
(Additional file  1: Table  S4). It’s interesting to note that 
the mean SAScore values for Morgan atom types fall 
well below 4.5, which has been suggested as a cut-off for 
easy to synthesize molecules [19]. By contrast, the mean 
SAScore values for dummy and MMFF atom types are 
approximately 4.6.

Unfortunately, we also noted that Morgan atom types 
were associated with significantly lower OP compared to 
dummy and MMFF atom types (Fig.  9). The differences 
between dummy and MMFF atom types and between 
Morgan atom types of different radii were not statistically 
significant (Additional file 1: Table S5).

Taken together these results suggest that the choice of 
atom typing scheme defines a trade-off between OP and 

SA. The chemical diversity of atomic environments is 
vast, and classifying them into a small number of atom 
types means that atom typing schemes are degenerate, 
much like the human genetic code. The number of dis-
tinct atom types can be taken as an approximate meas-
ure of the scheme’s degree of degeneracy. LEADD tries 
to replicate the molecular connectivity of molecules seen 
in a library of drug-like molecules, but if a very degen-
erate atom typing scheme mischaracterizes this con-
nectivity the algorithm’s ability to replicate it falters. In 
our fragment databases we recorded 64 MMFF, 14,811 
Morgan (r = 1) and 381,252 Morgan (r = 2) atom types 
(Additional file 1: Table S1). Unique Morgan atom types 
greatly outnumber their MMFF counterparts, explaining 
the better SA associated with them.

The atom typing scheme’s degree of degeneracy also 
defines the observed OP-SA trade-off. LEADD consid-
ers two atom types to be compatible, and therefore suit-
able for bonding, if they have been observed bonded in 
reference molecules at least once. Given the same set of 
reference molecules, the probability of observing any 
specific pair of atom types bonded is larger when the 
number of distinct atom types is small. Consequently, 
the more degenerate an atom typing scheme, the more 

Fig. 9 LEADD optimization power comparison between atom typing schemes. Benchmark scores range between 0 and 1, with higher scores being 
better. Boxes represent interquartile ranges (IQR), the black line within them medians and the whiskers Q ± 1.5IQR. Data beyond the whiskers are 
considered outliers and represented as dots. Colored dots represent maximum benchmark scores
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promiscuous its atom types, in the sense that atom types 
will be deemed compatible with a larger number of other 
atom types. Ultimately, this also affects the number of 
fragments that are compatible with each connection. In 
the case of MMFF atom types, 85.96% of all fragments are 
compatible with the average connection according to the 
lax compatibility definition. This number drops to 1.53% 
and 0.05% for Morgan (r = 1) and Morgan (r = 2) atom 
types respectively. Even more dramatic differences are 
observed when considering the strict compatibility defi-
nition (Additional file  1: Table  S1). This highlights that 
atom type promiscuity enables the algorithm to access a 
larger number of states (i.e. molecules) from the current 
state, aiding it in the escape of local fitness minima and 
explaining the associated greater OP.

Out of the tested atom typing schemes, we believe 
that for most use cases Morgan (r = 1) atom types rep-
resent the best OP-SA compromise. Other compromises 
of interest may be achievable with alternative atom typ-
ing schemes. LEADD can be readily expanded to use 
other atom typing schemes. For instance, one could col-
lapse Morgan atom types into a smaller number of atom 
types with some type of hashing function. However, as 
this would inevitably cause collisions, the hashing func-
tion would need to be locality sensitive to avoid merg-
ing completely unrelated atom types. An alternative 
approach might be to cluster atomic environments and 
use cluster assignments as atom types. This approach 
could allow fine control over the OP-SA trade-off by 
modulating the number of clusters. We would like to 
remark however that the number of unique atom types 
is only a good metric for atom typing degeneracy when 
atomic environments are distributed uniformly across 
atom types. This is likely to be the case for Morgan atom 
types since they are calculated using hashing functions, 
which are designed to distribute inputs uniformly over an 
integer range, but may not be the case for other schemes. 
Instead, it would be more appropriate to use metrics 
that measure the information content of atom types (i.e. 
within atom type atomic environment similarities).

Implications of compatibility binarization
LEADD’s approach to find suitable fragments for 
genetic operators requires that connection compatibil-
ity be expressed as a binary property. However, it may 
be argued that connection pairs are on a compatibility 
spectrum based on the observed frequency of said pair: 
if a pairing is observed thousands of times it’s more 
compatible than if it’s observed just once, yet they are 
deemed equally compatible. Consequently, infrequent 
connections may misrepresent molecular connectiv-
ity. We regularly observed large disparities among com-
patible connection pairing frequencies and wanted to 

measure the extent to which this is detrimental to the SA 
of designed molecules. By default the MBPM approach 
uses the lax compatibility definition, but this may be 
changed to the strict definition. Under the strict com-
patibility definition each connection is compatible with 
exactly one other connection, eliminating compatible 
connection pairing frequency imbalances. We found no 
practically significant differences in SAScore when using 
the strict compatibility definition for MBPM as opposed 
to the lax one (Additional file 1: Fig. S5). Considering that 
a fragment’s connectivity is part of its identity, infrequent 
connections are contained to infrequent fragments. Since 
LEADD samples fragments with a probability propor-
tional to their frequency we hypothesize that, while the 
binarization of connection compatibility does misrepre-
sent the molecular connectivity of the reference library, 
this rarely manifests itself in designed molecules.

Effect of fragmentation scheme
The atom typing scheme degeneracy, the binarization of 
connection compatibility, and other factors such as con-
nection compatibility being expressed only as pairwise 
relationships, all contribute towards LEADD’s descrip-
tion of molecular connectivity being imperfect. Each 
bond created by the algorithm has a probability of being 
non-drug-like. While we have discussed approaches 
to decrease this probability, an alternative approach to 
improve the drug-likeness of designed molecules is to 
reduce the number of bonds created by the algorithm. 
This can be achieved using larger fragments. To prove 
this we ran the benchmark using different types of acyclic 
fragments: single-atom fragments (s = 0), fragments with 
0 to 2 bonds (s ϵ [0 .. 2]) and whole side chains and linkers 

Fig. 10 Comparison of designed molecules’ SAScore distributions 
using different atom typing schemes. Includes molecules of all 
benchmarks and replicas. Molecules with lower SAScores are 
predicted to be easier to synthesize
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resulting from the deletion of ring systems. In general, 
the SAScores of molecules designed using larger frag-
ments were lower than those designed using smaller frag-
ments (Fig. 10). While the SAScore differences between 
s = 0 and s ϵ [0 .. 2] were almost negligible, using mono-
lithic acyclic fragments did lead to substantial improve-
ments in SAScore (Additional file  1: Tables S6, S7). It’s 
interesting to note that the observed improvements in 
SAScore were larger for dummy atom types than for 
Morgan atom types, highlighting that the bonds created 
when using Morgan atom types are more drug-like.

The use of larger fragments didn’t affect LEADD’s OP 
when using dummy atom types. However, we did observe 
significant improvements in OP when using large frag-
ments coupled with Morgan (r = 1) atom types (Fig. 11, 
Additional file 1: Tables S8, S9). Genetic operations using 
larger fragments are associated with bigger step sizes in 
chemical space, which allows the algorithm to escape 
local fitness minima. Because the number of chemical 
states accessible from a given state is much smaller when 
using Morgan atom types as compared to dummy atom 
types, the probability of getting stuck in local fitness 
minima is larger in the former case. This explains why a 

bigger step size is beneficial for Morgan, but not dummy 
atom types. It’s worth noting that the step size associ-
ated with larger fragments isn’t longer solely because of 
the bigger number of atoms per fragment, but also due 
to the greater degree of branching in larger fragments. 
While we implemented internal operators that attempt to 
mitigate this, there still is a risk that the algorithm may 
design certain highly branched topologies that are diffi-
cult to modify with genetic operators without unwinding 
the entire stack of operations. Since large fragments can 
capture branched motifs as a single unit, the risk of this 
happening is reduced. Future algorithms could improve 
upon this by implementing operators that target entire 
sections or branches of the meta-graph instead of a single 
vertex.

Given that larger fragments improve SA and either 
increase OP or don’t affect it, it’s tempting to conclude 
that the use of large fragments is always preferable. How-
ever, it should be noted that the larger step sizes associ-
ated with big fragments also carry the risk of “jumping” 
over good solutions. This can be partially overcome by 
mixing fragments of different sizes (e.g. s ϵ [0.. 2]). A 
more pressing issue is that the use of large fragments 

Fig. 11 LEADD optimization power comparison between different combinations of atom typing and fragmentation schemes. Benchmark scores 
range between 0 and 1, with higher scores being better. Boxes represent interquartile ranges (IQR), the black line within them medians and the 
whiskers Q ± 1.5IQR. Data beyond the whiskers are considered outliers and represented as dots. Colored dots represent maximum benchmark 
scores
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requires a very extensive and diverse library of fragments 
to adequately represent chemical space. Besides dictat-
ing greater amounts of memory to store the pre-calcu-
lated compatible fragments, as the number of fragments 
grows so does the size of the search space, and with it 
the number of operations and generations necessary to 
adequately explore it. For Morgan atom types, we believe 
that the improved SA and OP tied to monolithic frag-
ments justify their use. However, for dummy atom types 
we think that the minor SA improvements aren’t suffi-
cient justification.

Handling fragment numerosity
A large number of fragments also poses the question of 
how to prioritize fragments to explore chemical space 
efficiently. We opted to use the fragments’ frequencies 
in drug-like matter as biasing weights to determine the 
outcomes of genetic operations. In an attempt to improve 
upon this, we also implemented a Lamarckian evolution-
ary mechanism that biases the exploration towards cer-
tain areas of the search space based on the outcomes of 
previous operations. A similar concept was explored in 
the particle swarm optimizer Colibree [56], where each 
molecule has preferences towards certain fragments, 
encoded as a floating point number array. In Colibree 
these preferences apply to the entire molecule, which is 
computationally more efficient and enables straightfor-
ward communication of preferences among molecules 
within the swarm, but lacks the spatial resolution that 
one would desire when working with structure-based 
scoring functions. Our Lamarckian evolutionary mecha-
nism attempts to improve on this by assigning fragment 
preferences to connectors instead. Unfortunately, with 
the explored settings, the Lamarckian guided evolution 
mechanism failed to significantly improve the optimiza-
tion power of the algorithm (data not shown). One pos-
sible explanation for the shortcomings of the approach 
is that, given the large number of fragments  (105–106 
compared to the 7196 of Colibree), the number of gen-
erations for which LEADD runs (i.e. 1000–10,000) is 
insufficient to resolve connector-fragment preferences. 
The impermanence of connectors may exacerbate the 
problem. When a fragment is deleted or substituted the 
knowledge accumulated in its connector arrays is erased, 
effectively resetting the progress of the Lamarckian evo-
lution. A potential solution could be mapping fragment 
preferences to points in space instead, which also would 
allow molecules to share their preferences among each 
other. However, the observed slower runtimes and larger 
memory footprints discourage us from exploring this 
approach further.

Comparison of SA improvement approaches
LEADD also ships with more traditional means of 
improving the SA of designed molecules, namely a simple 
filter that deletes molecules with SAScores above a given 
threshold and a SAScore-based heuristic score modifier 
that biases the objective function towards molecules with 
lower SAScores, as described by Gao and Coley [14]. As 
a reminder, the SAScore is a composite metric based on 
(a) how much the molecular connectivity of a molecule 
resembles that of reference drug-like molecules (i.e. Fea-
tureScore) and (b) the number of synthetic nuisances 
within that molecule, for example stereo centers, spiro-, 
bridged- and macro-cycles (i.e. ComplexityPenalty). 
Because the atom type approach to increase SA only 
tries to improve the FeatureScore it can be of interest to 
combine it with the SAScore filter or heuristic. We were 
interested in comparing how these different approaches 
to increase SA fare on their own. The parameters for the 
SAScore filter (SAScore ≤ 4.5) and heuristic (µ = 2.23, 
σ = 0.65) were taken from the literature, where they have 
been described as effective means to design SA molecules 
[14, 19]. Our results confirm that all approaches can be 
used to design more SA molecules (Fig.  12, Additional 
file 1: Table S10) and that, with the exception of the SAS-
core filter, this was accompanied by a significant loss of 
optimization power (Fig. 13, Additional file 1: Table S11). 
There appears to be an inverse correlation between SA 
and OP, and the observed OP-SA compromises seem to 
define a FeatureScore Pareto front (Additional file 1: Fig. 
S6). However, it should be noted that each approach has 
a different SA target. We didn’t manage to find SAScore 

Fig. 12 Comparison of designed molecules’ SAScore distributions 
using different SA optimization strategies. Includes molecules of 
all benchmarks and replicas. Molecules with lower SAScores are 
predicted to be easier to synthesize
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filter and heuristic parameters that replicate the SAScore 
distribution of Morgan (r = 1) atom types. Hence, which 
approach provides the best OP-SA trade-off, if any, is 
inconclusive.

Comparison to other algorithms and virtual screening
Lastly, we wanted to compare LEADD’s performance 
to that of GB-GA [35] and a VS of the GuacaMol vir-
tual library. In terms of OP, LEADD with dummy atom 
types outperformed the VS in 26/27 benchmarks, with 
the only exception being the Valsartan SMARTS bench-
mark which uses a binary scoring function ill-suited for 
goal-directed optimization approaches. LEADD with 
the use of dummy atom types is comparable to GB-GA, 
in the sense that both are graph-based EAs with very 
few restrictions on how atoms can be connected. Corre-
spondingly, the SA (Fig. 14, Additional file 1: Table S12) 
and OP (Fig.  16, Additional file  1: Table  S13) of these 
two systems are comparable. The key difference between 
both algorithms is that LEADD modifies molecules on a 
fragment level as opposed to the atom level of GB-GA. 
Although we paired dummy atom types with single-
atom acyclic fragments, ring systems are always treated 
as monolithic fragments. We expected this to yield 
improved SA and smaller OP, yet found the opposite. 
LEADD has better OP than GB-GA, outperforming it in 
18/27 benchmarks and performing equally well or bet-
ter in 23/27 benchmarks. We attribute this to the big-
ger step size associated with fragments and the internal 

Fig. 13 LEADD optimization power comparison using different SA optimization strategies. Benchmark scores range between 0 and 1, with higher 
scores being better. Boxes represent interquartile ranges (IQR), the black line within them medians and the whiskers Q ± 1.5IQR. Data beyond the 
whiskers are considered outliers and represented as dots. Colored dots represent maximum benchmark scores

Fig. 14 Comparison of SAScore distributions between molecules 
designed by LEADD and GB-GA and those found through a VS. 
Includes molecules of all benchmarks and replicas. Molecules with 
lower SAScores are predicted to be easier to synthesize
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topological similarity threshold to enforce population 
diversity, giving it an edge at escaping local fitness min-
ima. It’s also possible that the same factors explain the 
better SA of molecules designed by GB-GA. Most Gua-
caMol benchmarks incorporate topological similarity to 
a reference drug-like molecule in their objective func-
tions, implicitly capturing some SA notions. Because of 
LEADD’s internal similarity threshold only the best indi-
vidual within the population can assume the identity of 
the reference molecule, whereas the rest are forced to 
diverge from it. In GB-GA all individuals are allowed to 
approach the target molecule as much as possible, ben-
efitting to a greater extent from the implicit SA target of 
the objective function. Moreover, GB-GA doesn’t allow 
the creation of SSSR cycles bigger than six-membered 
rings whereas some of the fragments used by LEADD do 
include bigger cycles. Since the SAScore incorporates a 
macrocycle penalty this could account for some of the 
observed differences. Ultimately, the magnitude of the 
SA changes associated with the use of fragments, be it 
cyclic or acyclic, are small (Additional file  1: Tables S7, 
S12). This calls into the question the widespread practice 
of fragment-based molecular construction as a means 
to improve SA, and we hypothesize that its effectiveness 
depends on how well in silico fragments and their assem-
bly rules correlate with ex silico reactants and chemical 
reactions.

When using Morgan (r = 1) atom types and mono-
lithic acyclic fragments LEADD designs molecules with 
much better SA than GB-GA (Fig.  14, Additional file  1: 
Table  S12). This is to be expected since GB-GA doesn’t 
take SA into account intrinsically. However, it’s pos-
sible to design SA molecules with GB-GA by using the 
previously discussed extrinsic SAScore-based heuristic 
score modifier [14, 23]. Doing so yields a similar OP-SA 
trade-off to the one observed for LEADD and the same 
heuristic (Figs.  12, 13), strongly favoring SA over OP 
(Additional file  1: Figs. S7, S8). The SA of molecules 
designed by LEADD using Morgan (r = 1) atom types is 
almost on par with those found by a VS (Fig.  14, Addi-
tional file 1: Table S12). We would like to remark that the 
feature set we used to calculate SAScores was extracted 
from ChEMBL [50], and that the screened GuacaMol 
library is a subset of ChEMBL [13]. It’s therefore to be 
expected that molecules found through VS have bet-
ter SAScores. Since SAScores are a rather crude way of 
assessing SA, to confirm our findings we ran retrosyn-
thetic analyses on the top 10 scoring molecules of each 
benchmark replica using AiZynthFinder [21] with the 
ZINC [1] reactant stock and USPTO-derived reaction 
template policy provided by the authors. Both LEADD 
and GB-GA designed less synthesizable molecules than 
those found by the VS, but when using Morgan atom 

types LEADD designed considerably more synthesizable 
molecules than GB-GA (Fig.  15). It’s worth noting that 
only 60% of the molecules selected by the VS from the 
ChEMBL subset were deemed synthesizable by the ret-
rosynthetic analyses. If we assume that all molecules in 
ChEMBL are synthesizable this would suggest that we 
might be underestimating the SA of molecules, including 
those designed by the EAs.

Interestingly, we didn’t observe a statistically significant 
difference in OP stochastic dominance between LEADD 
with Morgan atom types and GB-GA (Additional file  1: 
Table S13). Given that EAs are stochastic in nature, one 
would typically run multiple replicas and keep the best 
results. This justifies comparing maximum instead of 
average benchmark scores. In terms of maximum score, 
LEADD with Morgan atom types performed comparably 
or better than GB-GA in 16/27 benchmarks and compa-
rably or better than the VS in 23/27 benchmarks (Fig. 16). 
Crucially, LEADD performed better than GB-GA in the 
Deco Hop and Scaffold Hop benchmarks, which are 
arguably the most representative of real drug discovery 
problems.

We would like to note that goal-directed design 
employing structure-based scoring functions is associ-
ated with an additional set of challenges that isn’t posed 
by the ligand-based GuacaMol benchmark suite, includ-
ing the handling of stereochemistry, pose inversion and 
the typical bias of these scoring functions towards large, 
hydrophobic and flexible molecules. Indeed, preliminary 

Fig. 15 Fraction of top-10 scored molecules per replica synthesizable 
by LEADD (with different settings), GB-GA and VS in N or less steps 
using ZINC reactants and USPTO reaction templates, as assessed by 
AiZynthFinder. Molecules requiring more than 8 synthetic steps are 
considered not synthesizable
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results using OpenEye ROCS [57, 58] as LEADD’s scor-
ing function show a tendency towards designing large 
and very cyclic molecules. This also makes it challenging 
to compare 2D molecular design algorithms like LEADD 
and GB-GA to their 3D counterparts [15, 22, 24, 39].

It’s also important to consider the amount of compu-
tational resources spent by each approach to achieve 
its results. Figure  17 shows how an average EA replica 
finds higher scoring molecules than a VS with a smaller 
number of scoring function calls. While one should 
keep in mind that it’s generally desirable to run multi-
ple EA replicas, EAs make better use of computational 
resources than a VS, especially if evaluating the scoring 
function is expensive. It’s also worth noting that LEADD, 
despite its use of fragments, didn’t find solutions much 
slower than GB-GA (Fig. 17). Naturally, there is an over-
head associated with the design algorithm. On a sin-
gle core of a Xeon E5-2680v2 CPU (2.8  GHz), LEADD 
designed on average 272  mol/s. Assuming that about 
 104–105 molecules must be designed to find good solu-
tions (Fig. 17) this corresponds to an overhead of just a 
couple CPU minutes. For comparison GB-GA designed 
98 mol/s. This difference in performance is mostly due to 

implementation optimizations rather than due to algo-
rithmic differences since LEADD is considerably more 
complex algorithmically. When using fast scoring func-
tions molecule generation can become the rate limiting 
step. During the GuacaMol benchmark suite LEADD 
generated molecules slower than they were scored in 
25/27 benchmarks. On average, molecules were designed 
eightfold slower than they were scored, with differences 
exceeding 20-fold in some benchmarks. This showcases 
the need for fast molecular design algorithms. Note that 
the reported values are averages, and that execution 
times depend heavily on the number of possibilities the 
algorithm has to consider. For instance, when using a 
smaller database of fragments or smaller population the 
algorithm is faster. Similarly, the computational resources 
spent per operation increase with molecular complexity, 
specifically degree of branching.

If one wishes to achieve even greater OP it’s possible to 
use the results of a VS as the starting population for EAs. 
While we don’t believe this qualifies as de novo molec-
ular design, this type of molecular optimization may be 
interesting when computational resources are abundant. 
Unsurprisingly, we found that using VS results as starting 

Fig. 16 Optimization power comparison between LEADD, GB-GA and a VS. Benchmark scores range between 0 and 1, with higher scores being 
better. Boxes represent interquartile ranges (IQR), the black line within them medians and the whiskers Q ± 1.5IQR. Data beyond the whiskers are 
considered outliers and represented as dots. Colored dots represent maximum benchmark scores. Note that VS results are deterministic and have 
null variability
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populations decreased the variability between replicas 
and increased the mean replica score (Additional file  1: 
Fig. S9). However, when using Morgan atom types this 
didn’t always translate into higher maximum scores, as 
the starting population may already be close to local fit-
ness minima in which the algorithm might get stuck. It’s 

interesting to note that, while the molecules designed 
this way have better SA than those in a true de novo 
design setting, it’s worse than that of the starting popu-
lation (Additional file  1: Fig. S10). The SA loss is small 
for LEADD with Morgan atom types, but substantial 
for GB-GA and LEADD with dummy atom types, in the 

Fig. 17 Score of best found molecule as a function of the number of scored molecules. For LEADD and GB-GA each line represents a replica. VS 
results were shuffled 100 times and averaged to account for the effects of molecule screening order. Note that these are individual molecule scores 
and not population/benchmark scores and therefore don’t correspond to the values in Fig. 16.
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latter case almost reverting to the de novo design values. 
This showcases a tendency to design synthetically com-
plex molecules when algorithms form bonds carelessly.

Meaning of synthetic accessibility
Something all SA assessment tools have in common is 
that their judgements aren’t absolute but rather relative 
to the current chemical state of the art. Many DNDD 
algorithms, including LEADD, try to optimize the val-
ues of these SA predictions. One of the main appeals of 
DNDD is that it can suggest novel molecules. But if we 
constrict our search to the known types of chemistry that 
boast good SA predictions, how novel will these mol-
ecules truly be? Could our favor of the familiar lead us 
to neglect large areas of (potentially interesting) chemical 
space? Given the large uncertainty surrounding molecu-
lar activity predictions focusing research efforts on famil-
iar chemistry is a reasonable way of increasing a project’s 
chances of success, but at a larger scale we risk creating 
a self-perpetuating cycle that could lead to academic 
stagnation. If we are confident enough in the accuracy of 
our scoring functions perhaps we shouldn’t hold historic 
data in such high regard and occasionally venture into 
unknown territory.

Conclusions
We describe a novel set of genetic operators for frag-
ment- and graph-based evolutionary molecular design 
algorithms that can enforce an arbitrary set of atom com-
patibility rules in a computationally efficient manner. 
Here we applied these genetic operators to achieve an 
improvement in OP and SA of designed molecules com-
pared to other EAs.
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